* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
308 lines
10 KiB
Python
308 lines
10 KiB
Python
""" Module for GAROM """
|
|
|
|
import torch
|
|
|
|
from .solver import MultiSolverInterface
|
|
from ..utils import check_consistency
|
|
from ..loss.loss_interface import LossInterface
|
|
from ..condition import InputOutputPointsCondition
|
|
from ..utils import check_consistency
|
|
from ..loss import LossInterface, PowerLoss
|
|
from torch.nn.modules.loss import _Loss
|
|
|
|
|
|
class GAROM(MultiSolverInterface):
|
|
"""
|
|
GAROM solver class. This class implements Generative Adversarial
|
|
Reduced Order Model solver, using user specified ``models`` to solve
|
|
a specific order reduction``problem``.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: Coscia, D., Demo, N., & Rozza, G. (2023).
|
|
*Generative Adversarial Reduced Order Modelling*.
|
|
DOI: `arXiv preprint arXiv:2305.15881.
|
|
<https://doi.org/10.48550/arXiv.2305.15881>`_.
|
|
"""
|
|
|
|
accepted_conditions_types = InputOutputPointsCondition
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
generator,
|
|
discriminator,
|
|
loss=None,
|
|
optimizer_generator=None,
|
|
optimizer_discriminator=None,
|
|
scheduler_generator=None,
|
|
scheduler_discriminator=None,
|
|
gamma=0.3,
|
|
lambda_k=0.001,
|
|
regularizer=False,
|
|
):
|
|
"""
|
|
:param AbstractProblem problem: The formualation of the problem.
|
|
:param torch.nn.Module generator: The neural network model to use
|
|
for the generator.
|
|
:param torch.nn.Module discriminator: The neural network model to use
|
|
for the discriminator.
|
|
:param torch.nn.Module loss: The loss function used as minimizer,
|
|
default ``None``. If ``loss`` is ``None`` the defualt
|
|
``PowerLoss(p=1)`` is used, as in the original paper.
|
|
:param Optimizer optimizer_generator: The neural
|
|
network optimizer to use for the generator network
|
|
, default is `torch.optim.Adam`.
|
|
:param Optimizer optimizer_discriminator: The neural
|
|
network optimizer to use for the discriminator network
|
|
, default is `torch.optim.Adam`.
|
|
:param Scheduler scheduler_generator: Learning
|
|
rate scheduler for the generator.
|
|
:param Scheduler scheduler_discriminator: Learning
|
|
rate scheduler for the discriminator.
|
|
:param dict scheduler_discriminator_kwargs: LR scheduler constructor keyword args.
|
|
:param gamma: Ratio of expected loss for generator and discriminator, defaults to 0.3.
|
|
:type gamma: float
|
|
:param lambda_k: Learning rate for control theory optimization, defaults to 0.001.
|
|
:type lambda_k: float
|
|
:param regularizer: Regularization term in the GAROM loss, defaults to False.
|
|
:type regularizer: bool
|
|
|
|
.. warning::
|
|
The algorithm works only for data-driven model. Hence in the ``problem`` definition
|
|
the codition must only contain ``input_points`` (e.g. coefficient parameters, time
|
|
parameters), and ``output_points``.
|
|
"""
|
|
|
|
# set loss
|
|
if loss is None:
|
|
loss = PowerLoss(p=1)
|
|
|
|
super().__init__(
|
|
models=[generator, discriminator],
|
|
problem=problem,
|
|
optimizers=[optimizer_generator, optimizer_discriminator],
|
|
schedulers=[
|
|
scheduler_generator,
|
|
scheduler_discriminator,
|
|
],
|
|
use_lt=False
|
|
)
|
|
|
|
# check consistency
|
|
check_consistency(loss, (LossInterface, _Loss, torch.nn.Module),
|
|
subclass=False)
|
|
self._loss = loss
|
|
|
|
# set automatic optimization for GANs
|
|
self.automatic_optimization = False
|
|
|
|
# check consistency
|
|
check_consistency(gamma, float)
|
|
check_consistency(lambda_k, float)
|
|
check_consistency(regularizer, bool)
|
|
|
|
# began hyperparameters
|
|
self.k = 0
|
|
self.gamma = gamma
|
|
self.lambda_k = lambda_k
|
|
self.regularizer = float(regularizer)
|
|
|
|
def forward(self, x, mc_steps=20, variance=False):
|
|
"""
|
|
Forward step for GAROM solver
|
|
|
|
:param x: The input tensor.
|
|
:type x: torch.Tensor
|
|
:param mc_steps: Number of montecarlo samples to approximate the
|
|
expected value, defaults to 20.
|
|
:type mc_steps: int
|
|
:param variance: Returining also the sample variance of the solution, defaults to False.
|
|
:type variance: bool
|
|
:return: The expected value of the generator distribution. If ``variance=True`` also the
|
|
sample variance is returned.
|
|
:rtype: torch.Tensor | tuple(torch.Tensor, torch.Tensor)
|
|
"""
|
|
|
|
# sampling
|
|
field_sample = [self.sample(x) for _ in range(mc_steps)]
|
|
field_sample = torch.stack(field_sample)
|
|
|
|
# extract mean
|
|
mean = field_sample.mean(dim=0)
|
|
|
|
if variance:
|
|
var = field_sample.var(dim=0)
|
|
return mean, var
|
|
|
|
return mean
|
|
|
|
def sample(self, x):
|
|
# sampling
|
|
return self.generator(x)
|
|
|
|
def _train_generator(self, parameters, snapshots):
|
|
"""
|
|
Private method to train the generator network.
|
|
"""
|
|
optimizer = self.optimizer_generator
|
|
optimizer.zero_grad()
|
|
|
|
generated_snapshots = self.sample(parameters)
|
|
|
|
# generator loss
|
|
r_loss = self._loss(snapshots, generated_snapshots)
|
|
d_fake = self.discriminator(
|
|
[generated_snapshots, parameters]
|
|
)
|
|
g_loss = (
|
|
self._loss(d_fake, generated_snapshots) + self.regularizer * r_loss
|
|
)
|
|
|
|
# backward step
|
|
g_loss.backward()
|
|
optimizer.step()
|
|
|
|
return r_loss, g_loss
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
|
"""
|
|
This method is called at the end of each training batch, and ovverides
|
|
the PytorchLightining implementation for logging the checkpoints.
|
|
|
|
:param torch.Tensor outputs: The output from the model for the
|
|
current batch.
|
|
:param tuple batch: The current batch of data.
|
|
:param int batch_idx: The index of the current batch.
|
|
:return: Whatever is returned by the parent
|
|
method ``on_train_batch_end``.
|
|
:rtype: Any
|
|
"""
|
|
# increase by one the counter of optimization to save loggers
|
|
(
|
|
self.trainer.fit_loop.epoch_loop.manual_optimization
|
|
.optim_step_progress.total.completed
|
|
) += 1
|
|
|
|
return super().on_train_batch_end(outputs, batch, batch_idx)
|
|
|
|
def _train_discriminator(self, parameters, snapshots):
|
|
"""
|
|
Private method to train the discriminator network.
|
|
"""
|
|
optimizer = self.optimizer_discriminator
|
|
optimizer.zero_grad()
|
|
|
|
# Generate a batch of images
|
|
generated_snapshots = self.sample(parameters)
|
|
|
|
# Discriminator pass
|
|
d_real = self.discriminator([snapshots, parameters])
|
|
d_fake = self.discriminator(
|
|
[generated_snapshots, parameters]
|
|
)
|
|
|
|
# evaluate loss
|
|
d_loss_real = self._loss(d_real, snapshots)
|
|
d_loss_fake = self._loss(d_fake, generated_snapshots.detach())
|
|
d_loss = d_loss_real - self.k * d_loss_fake
|
|
|
|
# backward step
|
|
d_loss.backward()
|
|
optimizer.step()
|
|
|
|
return d_loss_real, d_loss_fake, d_loss
|
|
|
|
def _update_weights(self, d_loss_real, d_loss_fake):
|
|
"""
|
|
Private method to Update the weights of the generator and discriminator
|
|
networks.
|
|
"""
|
|
|
|
diff = torch.mean(self.gamma * d_loss_real - d_loss_fake)
|
|
|
|
# Update weight term for fake samples
|
|
self.k += self.lambda_k * diff.item()
|
|
self.k = min(max(self.k, 0), 1) # Constraint to interval [0, 1]
|
|
return diff
|
|
|
|
def optimization_cycle(self, batch):
|
|
"""GAROM solver training step.
|
|
|
|
:param batch: The batch element in the dataloader.
|
|
:type batch: tuple
|
|
:return: The sum of the loss functions.
|
|
:rtype: LabelTensor
|
|
"""
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = points['input_points'], points['output_points']
|
|
d_loss_real, d_loss_fake, d_loss = self._train_discriminator(
|
|
parameters, snapshots
|
|
)
|
|
r_loss, g_loss = self._train_generator(parameters, snapshots)
|
|
diff = self._update_weights(d_loss_real, d_loss_fake)
|
|
condition_loss[condition_name] = r_loss
|
|
|
|
# some extra logging
|
|
self.store_log(
|
|
"d_loss",
|
|
float(d_loss),
|
|
self.get_batch_size(batch)
|
|
)
|
|
self.store_log(
|
|
"g_loss",
|
|
float(g_loss),
|
|
self.get_batch_size(batch)
|
|
)
|
|
self.store_log(
|
|
"stability_metric",
|
|
float(d_loss_real + torch.abs(diff)),
|
|
self.get_batch_size(batch)
|
|
)
|
|
return condition_loss
|
|
|
|
def validation_step(self, batch):
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = points['input_points'], points['output_points']
|
|
snapshots_gen = self.generator(parameters)
|
|
condition_loss[condition_name] = self._loss(snapshots, snapshots_gen)
|
|
loss = self.weighting.aggregate(condition_loss)
|
|
self.store_log('val_loss', loss, self.get_batch_size(batch))
|
|
return loss
|
|
|
|
def test_step(self, batch):
|
|
condition_loss = {}
|
|
for condition_name, points in batch:
|
|
parameters, snapshots = points['input_points'], points['output_points']
|
|
snapshots_gen = self.generator(parameters)
|
|
condition_loss[condition_name] = self._loss(snapshots, snapshots_gen)
|
|
loss = self.weighting.aggregate(condition_loss)
|
|
self.store_log('test_loss', loss, self.get_batch_size(batch))
|
|
return loss
|
|
|
|
@property
|
|
def generator(self):
|
|
return self.models[0]
|
|
|
|
@property
|
|
def discriminator(self):
|
|
return self.models[1]
|
|
|
|
@property
|
|
def optimizer_generator(self):
|
|
return self.optimizers[0].instance
|
|
|
|
@property
|
|
def optimizer_discriminator(self):
|
|
return self.optimizers[1].instance
|
|
|
|
@property
|
|
def scheduler_generator(self):
|
|
return self.schedulers[0].instance
|
|
|
|
@property
|
|
def scheduler_discriminator(self):
|
|
return self.schedulers[1].instance
|