* modify examples/problems * modify tutorials --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
58 lines
2.0 KiB
Python
58 lines
2.0 KiB
Python
""" Poisson problem. """
|
|
|
|
|
|
# ===================================================== #
|
|
# #
|
|
# This script implements the two dimensional #
|
|
# Poisson problem. The Poisson class is defined #
|
|
# inheriting from SpatialProblem. We denote: #
|
|
# u --> field variable #
|
|
# x,y --> spatial variables #
|
|
# #
|
|
# ===================================================== #
|
|
|
|
|
|
import torch
|
|
from pina.geometry import CartesianDomain
|
|
from pina import Condition
|
|
from pina.problem import SpatialProblem
|
|
from pina.operators import laplacian
|
|
from pina.equation import FixedValue, Equation
|
|
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
|
torch.sin(input_.extract(['y'])*torch.pi))
|
|
nabla_u = laplacian(output_.extract(['u']), input_)
|
|
return nabla_u - force_term
|
|
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3': Condition(
|
|
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4': Condition(
|
|
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'D': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
|
equation=Equation(laplace_equation)),
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(
|
|
torch.sin(pts.extract(['x'])*torch.pi) *
|
|
torch.sin(pts.extract(['y'])*torch.pi)
|
|
)/(2*torch.pi**2)
|
|
|
|
truth_solution = poisson_sol
|