165 lines
5.1 KiB
Python
165 lines
5.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from ...utils import check_consistency
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
"""Residual block base class. Implementation of a residual block.
|
|
|
|
.. seealso::
|
|
|
|
**Original reference**: He, Kaiming, et al.
|
|
*Deep residual learning for image recognition.*
|
|
Proceedings of the IEEE conference on computer vision
|
|
and pattern recognition. 2016..
|
|
DOI: `<https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_dim,
|
|
output_dim,
|
|
hidden_dim,
|
|
spectral_norm=False,
|
|
activation=torch.nn.ReLU(),
|
|
):
|
|
"""
|
|
Initializes the ResidualBlock module.
|
|
|
|
:param int input_dim: Dimension of the input to pass to the
|
|
feedforward linear layer.
|
|
:param int output_dim: Dimension of the output from the
|
|
residual layer.
|
|
:param int hidden_dim: Hidden dimension for mapping the input
|
|
(first block).
|
|
:param bool spectral_norm: Apply spectral normalization to feedforward
|
|
layers, defaults to False.
|
|
:param torch.nn.Module activation: Cctivation function after first block.
|
|
|
|
"""
|
|
super().__init__()
|
|
# check consistency
|
|
check_consistency(spectral_norm, bool)
|
|
check_consistency(input_dim, int)
|
|
check_consistency(output_dim, int)
|
|
check_consistency(hidden_dim, int)
|
|
check_consistency(activation, torch.nn.Module)
|
|
|
|
# assign variables
|
|
self._spectral_norm = spectral_norm
|
|
self._input_dim = input_dim
|
|
self._output_dim = output_dim
|
|
self._hidden_dim = hidden_dim
|
|
self._activation = activation
|
|
|
|
# create layers
|
|
self._l1 = self._spect_norm(nn.Linear(input_dim, hidden_dim))
|
|
self._l2 = self._spect_norm(nn.Linear(hidden_dim, output_dim))
|
|
self._l3 = self._spect_norm(nn.Linear(input_dim, output_dim))
|
|
|
|
def forward(self, x):
|
|
"""Forward pass for residual block layer.
|
|
|
|
:param torch.Tensor x: Input tensor for the residual layer.
|
|
:return: Output tensor for the residual layer.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
y = self._activation(self._l1(x))
|
|
y = self._l2(y)
|
|
x = self._l3(x)
|
|
return y + x
|
|
|
|
def _spect_norm(self, x):
|
|
"""Perform spectral norm on the layers.
|
|
|
|
:param x: A torch.nn.Module Linear layer
|
|
:type x: torch.nn.Module
|
|
:return: The spectral norm of the layer
|
|
:rtype: torch.nn.Module
|
|
"""
|
|
return nn.utils.spectral_norm(x) if self._spectral_norm else x
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class EnhancedLinear(torch.nn.Module):
|
|
"""
|
|
A wrapper class for enhancing a linear layer with activation and/or dropout.
|
|
|
|
:param layer: The linear layer to be enhanced.
|
|
:type layer: torch.nn.Module
|
|
:param activation: The activation function to be applied after the linear layer.
|
|
:type activation: torch.nn.Module
|
|
:param dropout: The dropout probability to be applied after the activation (if provided).
|
|
:type dropout: float
|
|
|
|
:Example:
|
|
|
|
>>> linear_layer = torch.nn.Linear(10, 20)
|
|
>>> activation = torch.nn.ReLU()
|
|
>>> dropout_prob = 0.5
|
|
>>> enhanced_linear = EnhancedLinear(linear_layer, activation, dropout_prob)
|
|
"""
|
|
|
|
def __init__(self, layer, activation=None, dropout=None):
|
|
"""
|
|
Initializes the EnhancedLinear module.
|
|
|
|
:param layer: The linear layer to be enhanced.
|
|
:type layer: torch.nn.Module
|
|
:param activation: The activation function to be applied after the linear layer.
|
|
:type activation: torch.nn.Module
|
|
:param dropout: The dropout probability to be applied after the activation (if provided).
|
|
:type dropout: float
|
|
"""
|
|
super().__init__()
|
|
|
|
# check consistency
|
|
check_consistency(layer, nn.Module)
|
|
if activation is not None:
|
|
check_consistency(activation, nn.Module)
|
|
if dropout is not None:
|
|
check_consistency(dropout, float)
|
|
|
|
# assign forward
|
|
if (dropout is None) and (activation is None):
|
|
self._model = torch.nn.Sequential(layer)
|
|
|
|
elif (dropout is None) and (activation is not None):
|
|
self._model = torch.nn.Sequential(layer, activation)
|
|
|
|
elif (dropout is not None) and (activation is None):
|
|
self._model = torch.nn.Sequential(layer, self._drop(dropout))
|
|
|
|
elif (dropout is not None) and (activation is not None):
|
|
self._model = torch.nn.Sequential(
|
|
layer, activation, self._drop(dropout)
|
|
)
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass through the enhanced linear module.
|
|
|
|
:param x: Input tensor.
|
|
:type x: torch.Tensor
|
|
|
|
:return: Output tensor after passing through the enhanced linear module.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self._model(x)
|
|
|
|
def _drop(self, p):
|
|
"""
|
|
Applies dropout with probability p.
|
|
|
|
:param p: Dropout probability.
|
|
:type p: float
|
|
|
|
:return: Dropout layer with the specified probability.
|
|
:rtype: torch.nn.Dropout
|
|
"""
|
|
return torch.nn.Dropout(p)
|