* fnn update, remove labeltensors * allow custom torch models * updating tests --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <dariocoscia@dhcp-031.eduroam.sissa.it>
34 lines
922 B
Python
34 lines
922 B
Python
import torch
|
|
import pytest
|
|
|
|
from pina.model import FeedForward
|
|
|
|
|
|
data = torch.rand((20, 3))
|
|
input_vars = 3
|
|
output_vars = 4
|
|
|
|
|
|
def test_constructor():
|
|
FeedForward(input_vars, output_vars)
|
|
FeedForward(input_vars, output_vars, inner_size=10, n_layers=20)
|
|
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2])
|
|
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
|
|
func=torch.nn.ReLU)
|
|
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
|
|
func=[torch.nn.ReLU, torch.nn.ReLU, None, torch.nn.Tanh])
|
|
|
|
|
|
def test_constructor_wrong():
|
|
with pytest.raises(RuntimeError):
|
|
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
|
|
func=[torch.nn.ReLU, torch.nn.ReLU])
|
|
|
|
|
|
|
|
def test_forward():
|
|
dim_in, dim_out = 3, 2
|
|
fnn = FeedForward(dim_in, dim_out)
|
|
output_ = fnn(data)
|
|
assert output_.shape == (data.shape[0], dim_out)
|