Files
PINA/examples/run_burgers.py
2022-07-11 10:58:15 +02:00

62 lines
1.8 KiB
Python

import argparse
import torch
from torch.nn import Softplus
from pina import PINN, Plotter, LabelTensor
from pina.model import FeedForward
from burger2 import Burgers1D
class myFeature(torch.nn.Module):
"""
Feature: sin(pi*x)
"""
def __init__(self, idx):
super(myFeature, self).__init__()
self.idx = idx
def forward(self, x):
return LabelTensor(torch.sin(torch.pi * x.extract(['x'])), ['sin(x)'])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-s", "-save", action="store_true")
group.add_argument("-l", "-load", action="store_true")
parser.add_argument("id_run", help="number of run", type=int)
parser.add_argument("features", help="extra features", type=int)
args = parser.parse_args()
feat = [myFeature(0)] if args.features else []
burgers_problem = Burgers1D()
model = FeedForward(
layers=[30, 20, 10, 5],
output_variables=burgers_problem.output_variables,
input_variables=burgers_problem.input_variables,
func=Softplus,
extra_features=feat,
)
pinn = PINN(
burgers_problem,
model,
lr=0.006,
error_norm='mse',
regularizer=0)
if args.s:
pinn.span_pts(
{'n': 200, 'mode': 'random', 'variables': 't'},
{'n': 20, 'mode': 'random', 'variables': 'x'},
locations=['D'])
pinn.span_pts(150, 'random', location=['gamma1', 'gamma2', 't0'])
pinn.train(5000, 100)
pinn.save_state('pina.burger.{}.{}'.format(args.id_run, args.features))
else:
pinn.load_state('pina.burger.{}.{}'.format(args.id_run, args.features))
plotter = Plotter()
plotter.plot(pinn)