Files
PINA/tests/test_fnn.py
2022-07-11 10:58:15 +02:00

59 lines
1.6 KiB
Python

import torch
import pytest
from pina import LabelTensor
from pina.model import FeedForward
class myFeature(torch.nn.Module):
"""
Feature: sin(pi*x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
return LabelTensor(torch.sin(torch.pi * x.extract('a')), 'sin(a)')
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
output_vars = ['d', 'e']
input_ = LabelTensor(data, input_vars)
def test_constructor():
FeedForward(input_vars, output_vars)
FeedForward(3, 4)
FeedForward(input_vars, output_vars, extra_features=[myFeature()])
FeedForward(input_vars, output_vars, inner_size=10, n_layers=20)
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2])
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
func=torch.nn.ReLU)
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
func=[torch.nn.ReLU, torch.nn.ReLU, None, torch.nn.Tanh])
def test_constructor_wrong():
with pytest.raises(RuntimeError):
FeedForward(input_vars, output_vars, layers=[10, 20, 5, 2],
func=[torch.nn.ReLU, torch.nn.ReLU])
def test_forward():
fnn = FeedForward(input_vars, output_vars)
output_ = fnn(input_)
assert output_.labels == output_vars
def test_forward2():
dim_in, dim_out = 3, 2
fnn = FeedForward(dim_in, dim_out)
output_ = fnn(input_)
assert output_.shape == (input_.shape[0], dim_out)
def test_forward_features():
fnn = FeedForward(input_vars, output_vars, extra_features=[myFeature()])
output_ = fnn(input_)
assert output_.labels == output_vars