54 lines
2.3 KiB
Python
54 lines
2.3 KiB
Python
# import numpy as np
|
|
# import torch
|
|
# from pina.problem import Problem
|
|
# from pina.segment import Segment
|
|
# from pina.cube import Cube
|
|
# from pina.problem2d import Problem2D
|
|
|
|
# xmin, xmax, ymin, ymax = -1, 1, -1, 1
|
|
|
|
# class ParametricEllipticOptimalControl(Problem2D):
|
|
|
|
# def __init__(self, alpha=1):
|
|
|
|
# def term1(input_, param_, output_):
|
|
# grad_p = self.grad(output_['p'], input_)
|
|
# gradgrad_p_x1 = self.grad(grad_p['x1'], input_)
|
|
# gradgrad_p_x2 = self.grad(grad_p['x2'], input_)
|
|
# return output_['y'] - param_ - (gradgrad_p_x1['x1'] + gradgrad_p_x2['x2'])
|
|
|
|
# def term2(input_, param_, output_):
|
|
# grad_y = self.grad(output_['y'], input_)
|
|
# gradgrad_y_x1 = self.grad(grad_y['x1'], input_)
|
|
# gradgrad_y_x2 = self.grad(grad_y['x2'], input_)
|
|
# return - (gradgrad_y_x1['x1'] + gradgrad_y_x2['x2']) - output_['u_param']
|
|
|
|
# def term3(input_, param_, output_):
|
|
# return output_['p'] - output_['u_param']*alpha
|
|
|
|
|
|
# def term(input_, param_, output_):
|
|
# return term1( input_, param_, output_) +term2( input_, param_, output_) + term3( input_, param_, output_)
|
|
|
|
# def nil_dirichlet(input_, param_, output_):
|
|
# y_value = 0.0
|
|
# p_value = 0.0
|
|
# return torch.abs(output_['y'] - y_value) + torch.abs(output_['p'] - p_value)
|
|
|
|
# self.conditions = {
|
|
# 'gamma1': {'location': Segment((xmin, ymin), (xmax, ymin)), 'func': nil_dirichlet},
|
|
# 'gamma2': {'location': Segment((xmax, ymin), (xmax, ymax)), 'func': nil_dirichlet},
|
|
# 'gamma3': {'location': Segment((xmax, ymax), (xmin, ymax)), 'func': nil_dirichlet},
|
|
# 'gamma4': {'location': Segment((xmin, ymax), (xmin, ymin)), 'func': nil_dirichlet},
|
|
# 'D1': {'location': Cube([[xmin, xmax], [ymin, ymax]]), 'func': term},
|
|
# #'D2': {'location': Cube([[0, 1], [0, 1]]), 'func': term2},
|
|
# #'D3': {'location': Cube([[0, 1], [0, 1]]), 'func': term3}
|
|
# }
|
|
|
|
# self.input_variables = ['x1', 'x2']
|
|
# self.output_variables = ['u', 'p', 'y']
|
|
# self.parameters = ['mu']
|
|
# self.spatial_domain = Cube([[xmin, xmax], [xmin, xmax]])
|
|
# self.parameter_domain = np.array([[0.5, 3]])
|
|
raise NotImplementedError('not available problem at the moment...')
|