Files
PINA/tests/test_block/test_pod.py
Filippo Olivo 4a6e73fa54 Fix basis device transfer in PODBlock (#650)
* fix gpu data moving
2025-09-19 13:42:32 +02:00

102 lines
3.3 KiB
Python

import torch
import pytest
from pina.model.block.pod_block import PODBlock
x = torch.linspace(-1, 1, 100)
toy_snapshots = torch.vstack(
[torch.exp(-(x**2)) * c for c in torch.linspace(0, 1, 10)]
)
def test_constructor():
pod = PODBlock(2)
pod = PODBlock(2, True)
pod = PODBlock(2, False)
with pytest.raises(TypeError):
pod = PODBlock()
@pytest.mark.parametrize("rank", [1, 2, 10])
def test_fit(rank, scale):
pod = PODBlock(rank, scale)
assert pod._basis == None
assert pod.basis == None
assert pod._scaler == None
assert pod._singular_values == None
assert pod.singular_values == None
assert pod.rank == rank
assert pod.scale_coefficients == scale
@pytest.mark.parametrize("scale", [True, False])
@pytest.mark.parametrize("rank", [1, 2, 10])
@pytest.mark.parametrize("randomized", [True, False])
def test_fit(rank, scale, randomized):
pod = PODBlock(rank, scale)
pod.fit(toy_snapshots, randomized)
n_snap = toy_snapshots.shape[0]
dof = toy_snapshots.shape[1]
assert pod.basis.shape == (rank, dof)
assert pod._basis.shape == (n_snap, dof)
assert pod.singular_values.shape == (rank,)
assert pod._singular_values.shape == (n_snap,)
if scale is True:
assert pod._mean.shape == (n_snap,)
assert pod._std.shape == (n_snap,)
assert pod.scaler["mean"].shape == (rank,)
assert pod.scaler["std"].shape == (rank,)
assert pod.scaler["mean"].shape[0] == pod.basis.shape[0]
else:
assert pod._std == None
assert pod._mean == None
assert pod.scaler == None
def test_forward():
pod = PODBlock(1)
pod.fit(toy_snapshots)
c = pod(toy_snapshots)
assert c.shape[0] == toy_snapshots.shape[0]
assert c.shape[1] == pod.rank
torch.testing.assert_close(c.mean(dim=0), torch.zeros(pod.rank))
torch.testing.assert_close(c.std(dim=0), torch.ones(pod.rank))
c = pod(toy_snapshots[0])
assert c.shape[1] == pod.rank
assert c.shape[0] == 1
pod = PODBlock(2, False)
pod.fit(toy_snapshots)
c = pod(toy_snapshots)
torch.testing.assert_close(c, (pod.basis @ toy_snapshots.T).T)
with pytest.raises(AssertionError):
torch.testing.assert_close(c.mean(dim=0), torch.zeros(pod.rank))
torch.testing.assert_close(c.std(dim=0), torch.ones(pod.rank))
@pytest.mark.parametrize("scale", [True, False])
@pytest.mark.parametrize("rank", [1, 2, 10])
@pytest.mark.parametrize("randomized", [True, False])
def test_expand(rank, scale, randomized):
pod = PODBlock(rank, scale)
pod.fit(toy_snapshots, randomized)
c = pod(toy_snapshots)
torch.testing.assert_close(pod.expand(c), toy_snapshots)
torch.testing.assert_close(pod.expand(c[0]), toy_snapshots[0].unsqueeze(0))
@pytest.mark.parametrize("scale", [True, False])
@pytest.mark.parametrize("rank", [1, 2, 10])
@pytest.mark.parametrize("randomized", [True, False])
def test_reduce_expand(rank, scale, randomized):
pod = PODBlock(rank, scale)
pod.fit(toy_snapshots, randomized)
torch.testing.assert_close(
pod.expand(pod.reduce(toy_snapshots)), toy_snapshots
)
torch.testing.assert_close(
pod.expand(pod.reduce(toy_snapshots[0])), toy_snapshots[0].unsqueeze(0)
)
# torch.testing.assert_close(pod.expand(pod.reduce(c[0])), c[0])