Files
PINA/pina/label_tensor.py
Filippo Olivo 6da74cadd5 Fix bugs (#385)
2025-03-19 17:46:34 +01:00

521 lines
18 KiB
Python

""" Module for LabelTensor """
from copy import copy, deepcopy
import torch
from torch import Tensor
full_labels = False
MATH_FUNCTIONS = {torch.sin, torch.cos}
class LabelTensor(torch.Tensor):
"""Torch tensor with a label for any column."""
@staticmethod
def __new__(cls, x, labels, *args, **kwargs):
full = kwargs.pop("full", full_labels)
if isinstance(x, LabelTensor):
x.full = full
return x
return super().__new__(cls, x, *args, **kwargs)
@property
def tensor(self):
return self.as_subclass(Tensor)
def __init__(self, x, labels, **kwargs):
"""
Construct a `LabelTensor` by passing a dict of the labels
:Example:
>>> from pina import LabelTensor
>>> tensor = LabelTensor(
>>> torch.rand((2000, 3)),
{1: {"name": "space"['a', 'b', 'c'])
"""
self.full = kwargs.get('full', full_labels)
if labels is not None:
self.labels = labels
else:
self._labels = {}
@property
def labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
if self.ndim - 1 in self._labels.keys():
return self._labels[self.ndim - 1]['dof']
@property
def full_labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
to_return_dict = {}
shape_tensor = self.shape
for i in range(len(shape_tensor)):
if i in self._labels.keys():
to_return_dict[i] = self._labels[i]
else:
to_return_dict[i] = {'dof': range(shape_tensor[i]), 'name': i}
return to_return_dict
@property
def stored_labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
return self._labels
@labels.setter
def labels(self, labels):
""""
Set properly the parameter _labels
:param labels: Labels to assign to the class variable _labels.
:type: labels: str | list(str) | dict
"""
if not hasattr(self, '_labels'):
self._labels = {}
if isinstance(labels, dict):
self._init_labels_from_dict(labels)
elif isinstance(labels, (list, range)):
self._init_labels_from_list(labels)
elif isinstance(labels, str):
labels = [labels]
self._init_labels_from_list(labels)
else:
raise ValueError("labels must be list, dict or string.")
def _init_labels_from_dict(self, labels):
"""
Update the internal label representation according to the values
passed as input.
:param labels: The label(s) to update.
:type labels: dict
:raises ValueError: dof list contain duplicates or number of dof
does not match with tensor shape
"""
tensor_shape = self.shape
# Set all labels if full_labels is True
if hasattr(self, 'full') and self.full:
labels = {
i: labels[i] if i in labels else {
'name': i, 'dof': range(tensor_shape[i])
}
for i in range(len(tensor_shape))
}
for k, v in labels.items():
# Init labels from str
if isinstance(v, str):
v = {'name': v, 'dof': range(tensor_shape[k])}
# Init labels from dict
elif isinstance(v, dict):
# Only name of the dimension if provided
if list(v.keys()) == ['name']:
v['dof'] = range(tensor_shape[k])
# Both name and dof are provided
elif sorted(list(v.keys())) == ['dof', 'name']:
dof_list = v['dof']
dof_len = len(dof_list)
if dof_len != len(set(dof_list)):
raise ValueError("dof must be unique")
if dof_len != tensor_shape[k]:
raise ValueError(
'Number of dof does not match tensor shape')
else:
raise ValueError('Illegal labels initialization')
# Assign labels values
self._labels[k] = v
def _init_labels_from_list(self, labels):
"""
Given a list of dof, this method update the internal label
representation
:param labels: The label(s) to update.
:type labels: list
"""
# Create a dict with labels
last_dim_labels = {
self.ndim - 1: {
'dof': labels,
'name': self.ndim - 1
}
}
self._init_labels_from_dict(last_dim_labels)
def extract(self, labels_to_extract):
"""
Extract the subset of the original tensor by returning all the columns
corresponding to the passed ``label_to_extract``.
:param labels_to_extract: The label(s) to extract.
:type labels_to_extract: str | list(str) | tuple(str)
:raises TypeError: Labels are not ``str``.
:raises ValueError: Label to extract is not in the labels ``list``.
"""
# Convert str/int to string
def find_names(labels):
dim_names = {}
for dim in labels.keys():
dim_names[labels[dim]['name']] = dim
return dim_names
if isinstance(labels_to_extract, (str, int)):
labels_to_extract = [labels_to_extract]
# Store useful variables
labels = copy(self._labels)
stored_keys = labels.keys()
dim_names = find_names(labels)
ndim = len(super().shape)
# Convert tuple/list to dict (having a list as input
# means that we want to extract a values from the last dimension)
if isinstance(labels_to_extract, (tuple, list)):
if not ndim - 1 in stored_keys:
raise ValueError(
"LabelTensor does not have labels in last dimension")
name = labels[ndim-1]['name']
labels_to_extract = {name: list(labels_to_extract)}
# If labels_to_extract is not dict then rise error
if not isinstance(labels_to_extract, dict):
raise ValueError('labels_to_extract must be str or list or dict')
# Initialize list used to perform extraction
extractor = [slice(None)]*ndim
# Loop over labels_to_extract dict
for dim_name, labels_te in labels_to_extract.items():
# If label is not find raise value error
idx_dim = dim_names.get(dim_name, None)
if idx_dim is None:
raise ValueError(
'Cannot extract label with is not in original labels')
dim_labels = labels[idx_dim]['dof']
labels_te = [labels_te] if isinstance(labels_te, (int, str)) else labels_te
if not isinstance(labels_te, range):
#If is done to keep the dimension if there is only one extracted label
extractor[idx_dim] = [dim_labels.index(i) for i in labels_te] \
if len(labels_te)>1 else slice(dim_labels.index(labels_te[0]), dim_labels.index(labels_te[0])+1)
else:
extractor[idx_dim] = slice(labels_te.start, labels_te.stop)
labels.update({idx_dim: {'dof': labels_te, 'name': dim_name}})
tensor = super().__getitem__(extractor).as_subclass(LabelTensor)
tensor._labels = labels
return tensor
def __str__(self):
"""
returns a string with the representation of the class
"""
s = ''
for key, value in self._labels.items():
s += f"{key}: {value}\n"
s += '\n'
s += self.tensor.__str__()
return s
@staticmethod
def cat(tensors, dim=0):
"""
Stack a list of tensors. For example, given a tensor `a` of shape
`(n,m,dof)` and a tensor `b` of dimension `(n',m,dof)`
the resulting tensor is of shape `(n+n',m,dof)`
:param tensors: tensors to concatenate
:type tensors: list(LabelTensor)
:param dim: dimensions on which you want to perform the operation
(default 0)
:type dim: int
:rtype: LabelTensor
:raises ValueError: either number dof or dimensions names differ
"""
if len(tensors) == 0:
return []
if len(tensors) == 1 or isinstance(tensors, LabelTensor):
return tensors[0]
# Perform cat on tensors
new_tensor = torch.cat(tensors, dim=dim)
# --------- Start definition auxiliary function ------
# Compute and update labels
def create_labels_cat(tensors, dim, tensor_shape):
stored_labels = [tensor.stored_labels for tensor in tensors]
keys = stored_labels[0].keys()
if any(not all(stored_labels[i][k] == stored_labels[0][k] for i in
range(len(stored_labels))) for k in keys if k != dim):
raise RuntimeError('tensors must have the same shape and dof')
# Copy labels from the first tensor and update the 'dof' for dimension `dim`
labels = copy(stored_labels[0])
if dim in labels:
labels_list = [tensor[dim]['dof'] for tensor in stored_labels]
last_dim_dof = range(tensor_shape[dim]) if all(isinstance(label, range)
for label in labels_list) else sum(labels_list, [])
labels[dim]['dof'] = last_dim_dof
return labels
# --------- End definition auxiliary function ------
# Update labels
if dim in tensors[0].stored_labels.keys():
new_tensor_shape = new_tensor.shape
labels = create_labels_cat(tensors, dim, new_tensor_shape)
else:
labels = tensors[0].stored_labels
new_tensor._labels = labels
return new_tensor
@staticmethod
def stack(tensors):
new_tensor = torch.stack(tensors)
labels = tensors[0]._labels
labels = {key + 1: value for key, value in labels.items()}
if full_labels:
new_tensor.labels = labels
else:
new_tensor._labels = labels
return new_tensor
def requires_grad_(self, mode=True):
lt = super().requires_grad_(mode)
lt._labels = self._labels
return lt
@property
def dtype(self):
return super().dtype
def to(self, *args, **kwargs):
"""
Performs Tensor dtype and/or device conversion. For more details, see
:meth:`torch.Tensor.to`.
"""
lt = super().to(*args, **kwargs)
lt._labels = self._labels
return lt
def clone(self, *args, **kwargs):
"""
Clone the LabelTensor. For more details, see
:meth:`torch.Tensor.clone`.
:return: A copy of the tensor.
:rtype: LabelTensor
"""
out = LabelTensor(super().clone(*args, **kwargs), deepcopy(self._labels))
return out
@staticmethod
def summation(tensors):
if len(tensors) == 0:
raise ValueError('tensors list must not be empty')
if len(tensors) == 1:
return tensors[0]
# Collect all labels
# Check labels of all the tensors in each dimension
if not all(tensor.shape == tensors[0].shape for tensor in tensors) or \
not all(tensor.full_labels[i] == tensors[0].full_labels[i] for
tensor in tensors for i in range(tensors[0].ndim - 1)):
raise RuntimeError('Tensors must have the same shape and labels')
last_dim_labels = []
data = torch.zeros(tensors[0].tensor.shape).to(tensors[0].device)
for tensor in tensors:
data += tensor.tensor
last_dim_labels.append(tensor.labels)
last_dim_labels = ['+'.join(items) for items in zip(*last_dim_labels)]
labels = {k: copy(v) for k, v in tensors[0].stored_labels.items()}
labels.update({
tensors[0].ndim - 1: {
'dof': last_dim_labels,
'name': tensors[0].name
}
})
return LabelTensor(data, labels)
def append(self, tensor, mode='std'):
if mode == 'std':
# Call cat on last dimension
new_label_tensor = LabelTensor.cat([self, tensor],
dim=self.ndim - 1)
elif mode == 'cross':
# Crete tensor and call cat on last dimension
tensor1 = self
tensor2 = tensor
n1 = tensor1.shape[0]
n2 = tensor2.shape[0]
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels)
new_label_tensor = LabelTensor.cat([tensor1, tensor2],
dim=self.ndim - 1)
else:
raise ValueError('mode must be either "std" or "cross"')
return new_label_tensor
@staticmethod
def vstack(label_tensors):
"""
Stack tensors vertically. For more details, see
:meth:`torch.vstack`.
:param list(LabelTensor) label_tensors: the tensors to stack. They need
to have equal labels.
:return: the stacked tensor
:rtype: LabelTensor
"""
return LabelTensor.cat(label_tensors, dim=0)
# ---------------------- Start auxiliary function definition -----
# This method is used to update labels
def _update_single_label(self, old_labels, to_update_labels, index, dim,
to_update_dim):
"""
TODO
:param old_labels: labels from which retrieve data
:param to_update_labels: labels to update
:param index: index of dof to retain
:param dim: label index
:return:
"""
old_dof = old_labels[to_update_dim]['dof']
if isinstance(index, slice):
to_update_labels.update({
dim: {
'dof': old_dof[index],
'name': old_labels[dim]['name']
}
})
return
if isinstance(index, int):
index = [index]
if isinstance(index, (list, torch.Tensor)):
to_update_labels.update({
dim: {
'dof': [old_dof[i] for i in index] if isinstance(old_dof, list) else index,
'name': old_labels[dim]['name']
}
})
return
raise NotImplementedError(f'Getitem not implemented for '
f'{type(index)} values')
# ---------------------- End auxiliary function definition -----
def __getitem__(self, index):
"""
TODO: Complete docstring
:param index:
:return:
"""
# Index are str --> call extract
if isinstance(index, str) or (isinstance(index, (tuple, list))
and all(
isinstance(a, str) for a in index)):
return self.extract(index)
# Store important variables
selected_lt = super().__getitem__(index)
stored_labels = self._labels
labels = copy(stored_labels)
# Put here because it is the most common case (int as index).
# Used by DataLoader -> put here for efficiency purpose
if isinstance(index, list):
if 0 in labels.keys():
self._update_single_label(stored_labels, labels, index,
0, 0)
selected_lt._labels = labels
return selected_lt
if isinstance(index, int):
labels.pop(0, None)
labels = {key - 1 if key > 0 else key: value for key, value in
labels.items()}
selected_lt._labels = labels
return selected_lt
if not isinstance(index, (tuple, torch.Tensor)):
index = [index]
# Ellipsis are used to perform operation on the last dimension
if index[0] == Ellipsis:
if len(self.shape) in labels:
self._update_single_label(stored_labels, labels, index, 0, 0)
selected_lt._labels = labels
return selected_lt
i = 0
for j, idx in enumerate(index):
if j in self.stored_labels.keys():
if isinstance(idx, int) or (
isinstance(idx, torch.Tensor) and idx.ndim == 0):
selected_lt = selected_lt.unsqueeze(j)
if idx != slice(None):
self._update_single_label(stored_labels, labels, idx, j, i)
else:
if isinstance(idx, int):
labels = {key - 1 if key > j else key:
value for key, value in labels.items()}
continue
i += 1
selected_lt._labels = labels
return selected_lt
def sort_labels(self, dim=None):
def arg_sort(lst):
return sorted(range(len(lst)), key=lambda x: lst[x])
if dim is None:
dim = self.ndim - 1
if self.shape[dim] == 1:
return self
labels = self.stored_labels[dim]['dof']
sorted_index = arg_sort(labels)
indexer = [slice(None)] * self.ndim
indexer[dim] = sorted_index
return self.__getitem__(tuple(indexer))
def __deepcopy__(self, memo):
cls = self.__class__
result = cls(deepcopy(self.tensor), deepcopy(self.stored_labels))
return result
def permute(self, *dims):
tensor = super().permute(*dims)
labels = self._labels
keys_list = list(*dims)
labels = {
keys_list.index(k): labels[k]
for k in labels.keys()
}
tensor._labels = labels
return tensor
def detach(self):
lt = super().detach()
lt._labels = self.stored_labels
return lt