Files
PINA/tests/test_model/test_mionet.py
2024-02-21 09:46:42 +01:00

101 lines
4.1 KiB
Python

import pytest
import torch
from pina import LabelTensor
from pina.model import MIONet
from pina.model import FeedForward
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
input_ = LabelTensor(data, input_vars)
def test_constructor():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
MIONet(networks=networks, reduction='+', aggregator='*')
def test_constructor_fails_when_invalid_inner_layer_size():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=2, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=12)
networks = {branch_net1: ['x'], branch_net2: ['x', 'y'], trunk_net: ['z']}
with pytest.raises(ValueError):
MIONet(networks=networks, reduction='+', aggregator='*')
def test_forward_extract_str():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(input_)
def test_backward_extract_str():
data = torch.rand((20, 3))
data.requires_grad = True
input_vars = ['a', 'b', 'c']
input_ = LabelTensor(data, input_vars)
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(input_)
l = torch.mean(model(input_))
l.backward()
assert data._grad.shape == torch.Size([20,3])
def test_forward_extract_int():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(data)
def test_backward_extract_int():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: [0], branch_net2: [1], trunk_net: [2]}
model = MIONet(networks=networks, reduction='+', aggregator='*')
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])
def test_forward_extract_str_wrong():
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
with pytest.raises(RuntimeError):
model(data)
def test_backward_extract_str_wrong():
data = torch.rand((20, 3))
data.requires_grad = True
branch_net1 = FeedForward(input_dimensions=1, output_dimensions=10)
branch_net2 = FeedForward(input_dimensions=1, output_dimensions=10)
trunk_net = FeedForward(input_dimensions=1, output_dimensions=10)
networks = {branch_net1: ['a'], branch_net2: ['b'], trunk_net: ['c']}
model = MIONet(networks=networks, reduction='+', aggregator='*')
with pytest.raises(RuntimeError):
model(data)
l = torch.mean(model(data))
l.backward()
assert data._grad.shape == torch.Size([20,3])