Files
PINA/pina/geometry/union_domain.py
Dario Coscia 982af4a04d Solving problems related to Geometry (#118)
* fix and add tests
* minor fix on domain classes

---------

Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-0-208.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-040.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

137 lines
4.9 KiB
Python

import torch
from .location import Location
from ..utils import check_consistency
from ..label_tensor import LabelTensor
import random
class Union(Location):
""" PINA implementation of Unions of Domains."""
def __init__(self, geometries):
""" PINA implementation of Unions of Domains.
:param list geometries: A list of geometries from 'pina.geometry'
such as 'EllipsoidDomain' or 'CartesianDomain'.
:Example:
# Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
# Create a union of the ellipsoid domains
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
"""
super().__init__()
# union checks
check_consistency(geometries, Location)
self._check_union_dimensions(geometries)
# assign geometries
self._geometries = geometries
@property
def geometries(self):
"""
The geometries."""
return self._geometries
@property
def variables(self):
"""
Spatial variables.
:return: All the spatial variables defined in '__init__()' in order.
:rtype: list[str]
"""
all_variables = []
seen_variables = set()
for geometry in self.geometries:
for variable in geometry.variables:
if variable not in seen_variables:
all_variables.append(variable)
seen_variables.add(variable)
return all_variables
def is_inside(self, point, check_border=False):
"""Check if a point is inside the union domain.
:param point: Point to be checked.
:type point: LabelTensor
:param check_border: Check if the point is also on the frontier
of the ellipsoid, default False.
:type check_border: bool
:return: Returning True if the point is inside, False otherwise.
:rtype: bool
"""
for geometry in self.geometries:
if geometry.is_inside(point, check_border):
return True
return False
def sample(self, n, mode='random', variables='all'):
"""Sample routine.
:param n: Number of points to sample in the shape.
:type n: int
:param mode: Mode for sampling, defaults to 'random'.
Available modes include: random sampling, 'random'.
:type mode: str, optional
:param variables: pinn variable to be sampled, defaults to 'all'.
:type variables: str or list[str], optional
:Example:
# Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
# Create a union of the ellipsoid domains
>>> union = Union([ellipsoid1, ellipsoid2])
>>> union.sample(n=1000)
LabelTensor([[-0.2025, 0.0072],
[ 0.0358, 0.5748],
[ 0.5083, 0.0482],
...,
[ 0.5857, 0.9279],
[ 1.1496, 1.7339],
[ 0.7650, 1.0469]])
>>> len(union.sample(n=1000)
1000
"""
sampled_points = []
# calculate the number of points to sample for each geometry and the remainder
remainder = n % len(self.geometries)
num_points = n // len(self.geometries)
# sample the points
# NB. geometries as shuffled since if we sample
# multiple times just one point, we would end
# up sampling only from the first geometry.
iter_ = random.sample(self.geometries, len(self.geometries))
for i, geometry in enumerate(iter_):
# int(i < remainder) is one only if we have a remainder
# different than zero. Notice that len(geometries) is
# always smaller than remaider.
sampled_points.append(geometry.sample(num_points + int(i < remainder), mode, variables))
# in case number of sampled points is smaller than the number of geometries
if len(sampled_points) >= n:
break
return LabelTensor(torch.cat(sampled_points), labels=[f'{i}' for i in self.variables])
def _check_union_dimensions(self, geometries):
"""Check if the dimensions of the geometries are consistent.
:param geometries: Geometries to be checked.
:type geometries: list[Location]
"""
for geometry in geometries:
if geometry.variables != geometries[0].variables:
raise NotImplementedError(
f'The geometries need to be the same dimensions. {geometry.variables} is not equal to {geometries[0].variables}')