31 lines
1.0 KiB
Python
31 lines
1.0 KiB
Python
import pytest
|
|
import torch
|
|
|
|
from pina import LabelTensor
|
|
from pina.model import DeepONet
|
|
from pina.model import FeedForward as FFN
|
|
|
|
data = torch.rand((20, 3))
|
|
input_vars = ['a', 'b', 'c']
|
|
output_vars = ['d']
|
|
input_ = LabelTensor(data, input_vars)
|
|
|
|
|
|
def test_constructor():
|
|
branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
|
trunk = FFN(input_variables=['b'], output_variables=20)
|
|
onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
|
|
|
def test_constructor_fails_when_invalid_inner_layer_size():
|
|
branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
|
trunk = FFN(input_variables=['b'], output_variables=19)
|
|
with pytest.raises(ValueError):
|
|
DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
|
|
|
def test_forward():
|
|
branch = FFN(input_variables=['a', 'c'], output_variables=10)
|
|
trunk = FFN(input_variables=['b'], output_variables=10)
|
|
onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
|
|
output_ = onet(input_)
|
|
assert output_.labels == output_vars
|