Files
PINA/tests/test_deeponet.py
Francesco Andreuzzi 7ce080fd85 Generic DeepONet (#68)
* generic deeponet
* example for generic deeponet
* adapt tests to new interface
2023-01-11 12:07:19 +01:00

31 lines
1.0 KiB
Python

import pytest
import torch
from pina import LabelTensor
from pina.model import DeepONet
from pina.model import FeedForward as FFN
data = torch.rand((20, 3))
input_vars = ['a', 'b', 'c']
output_vars = ['d']
input_ = LabelTensor(data, input_vars)
def test_constructor():
branch = FFN(input_variables=['a', 'c'], output_variables=20)
trunk = FFN(input_variables=['b'], output_variables=20)
onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
def test_constructor_fails_when_invalid_inner_layer_size():
branch = FFN(input_variables=['a', 'c'], output_variables=20)
trunk = FFN(input_variables=['b'], output_variables=19)
with pytest.raises(ValueError):
DeepONet(nets=[trunk, branch], output_variables=output_vars)
def test_forward():
branch = FFN(input_variables=['a', 'c'], output_variables=10)
trunk = FFN(input_variables=['b'], output_variables=10)
onet = DeepONet(nets=[trunk, branch], output_variables=output_vars)
output_ = onet(input_)
assert output_.labels == output_vars