Files
PINA/pina/data/dataset.py
FilippoOlivo 72ce6edaa7 Doc data
2025-04-17 10:48:31 +02:00

307 lines
10 KiB
Python

"""
Module for the PINA dataset
"""
from abc import abstractmethod, ABC
from torch.utils.data import Dataset
from torch_geometric.data import Data
from ..graph import Graph, LabelBatch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset.
Depending on the type inside the conditions, it creates a different dataset
object:
- :class:`PinaTensorDataset` for handling :class:`torch.Tensor` and
:class:`LabelTensor` data.
- :class:`PinaGraphDataset` for handling :class:`Graph` and :class:`Data`
data.
"""
def __new__(cls, conditions_dict, **kwargs):
"""
Instantiate the appropriate subclass of :class:`PinaDataset`.
If a graph is present in the conditions, returns a
:class:`PinaGraphDataset`, otherwise returns a
:class:`PinaTensorDataset`.
:param dict conditions_dict: Dictionary containing all the conditions
to be included in the dataset instance.
:return: A subclass of :class:`PinaDataset`.
:rtype: :class:`PinaTensorDataset` | :class:`PinaGraphDataset`
:raises ValueError: If an empty dictionary is provided.
"""
# Check if conditions_dict is empty
if len(conditions_dict) == 0:
raise ValueError("No conditions provided")
# Check is a Graph is present in the conditions
is_graph = cls._is_graph_dataset(conditions_dict)
if is_graph:
# If a Graph is present, return a PinaGraphDataset
return PinaGraphDataset(conditions_dict, **kwargs)
# If no Graph is present, return a PinaTensorDataset
return PinaTensorDataset(conditions_dict, **kwargs)
@staticmethod
def _is_graph_dataset(conditions_dict):
"""
Check if a graph is present in the conditions (at least one time).
:param conditions_dict: Dictionary containing the conditions.
:type conditions_dict: dict
:return: True if a graph is present in the conditions, False otherwise.
:rtype: bool
"""
# Iterate over the conditions dictionary
for v in conditions_dict.values():
# Iterate over the values of the current condition
for cond in v.values():
# Check if the current value is a list of Data objects
if isinstance(cond, (Data, Graph, list, tuple)):
return True
return False
class PinaDataset(Dataset, ABC):
"""
Abstract class for the PINA dataset. It defines the common interface for
the :class:`PinaTensorDataset` and :class:`PinaGraphDataset` classes.
"""
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
"""
Initialize a :class:`PinaDataset` instance by storing the provided
conditions dictionary, the maximum number of conditions to consider,
and the automatic batching flag.
:param conditions_dict: Dictionary containing the conditions.
:type conditions_dict: dict
:param max_conditions_lengths: Specifies the maximum number of data
points to include in a single batch for each condition.
:type max_conditions_lengths: dict
:param automatic_batching: Indicates whether PyTorch automatic batching
is enabled in :class:`PinaDataModule`.
:type automatic_batching: bool
"""
# Store the conditions dictionary
self.conditions_dict = conditions_dict
# Store the maximum number of conditions to consider
self.max_conditions_lengths = max_conditions_lengths
# Store length of each condition
self.conditions_length = {
k: len(v["input"]) for k, v in self.conditions_dict.items()
}
# Store the maximum length of the dataset
self.length = max(self.conditions_length.values())
# Dynamically set the getitem function based on automatic batching
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
def _get_max_len(self):
"""
Returns the length of the longest condition in the dataset.
:return: Length of the longest condition in the dataset.
:rtype: int
"""
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition["input"]))
return max_len
def __len__(self):
return self.length
def __getitem__(self, idx):
return self._getitem_func(idx)
def _getitem_dummy(self, idx):
"""
Return the index itself. This is used when automatic batching is
disabled to postpone the data retrieval to the dataloader.
:param idx: Index.
:type idx: int
:return: Index.
:rtype: int
"""
# If automatic batching is disabled, return the data at the given index
return idx
def _getitem_int(self, idx):
"""
Return the data at the given index in the dataset. This is used when
automatic batching is enabled.
:param int idx: Index.
:return: A dictionary containing the data at the given index.
:rtype: dict
"""
# If automatic batching is enabled, return the data at the given index
return {
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
for k, v in self.conditions_dict.items()
}
def get_all_data(self):
"""
Return all data in the dataset.
:return: A dictionary containing all the data in the dataset.
:rtype: dict
"""
index = list(range(len(self)))
return self.fetch_from_idx_list(index)
def fetch_from_idx_list(self, idx):
"""
Return data from the dataset given a list of indices.
:param idx: List of indices.
:type idx: list
:return: A dictionary containing the data at the given indices.
:rtype: dict
"""
to_return_dict = {}
for condition, data in self.conditions_dict.items():
# Get the indices for the current condition
cond_idx = idx[: self.max_conditions_lengths[condition]]
# Get the length of the current condition
condition_len = self.conditions_length[condition]
# If the length of the dataset is greater than the length of the
# current condition, repeat the indices
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
# Retrieve the data from the current condition
to_return_dict[condition] = self._retrive_data(data, cond_idx)
return to_return_dict
@abstractmethod
def _retrive_data(self, data, idx_list):
"""
Abstract method to retrieve data from the dataset given a list of
indices.
"""
class PinaTensorDataset(PinaDataset):
"""
Dataset class for the PINA dataset with :class:`torch.Tensor` and
:class:`LabelTensor` data.
"""
# Override _retrive_data method for torch.Tensor data
def _retrive_data(self, data, idx_list):
"""
Retrieve data from the dataset given a list of indices.
:param data: Dictionary containing the data
(only torch.Tensor/LableTensor).
:type data: dict
:param list(int) idx_list: indices to retrieve.
:return: Dictionary containing the data at the given indices.
:rtype: dict
"""
return {k: v[idx_list] for k, v in data.items()}
@property
def input(self):
"""
Return the input data for the dataset.
:return: Dictionary containing the input points.
:rtype: dict
"""
return {k: v["input"] for k, v in self.conditions_dict.items()}
class PinaGraphDataset(PinaDataset):
"""
Dataset class for the PINA dataset with :class:`torch_geometric.data.Data`
and :class:`Graph` data.
"""
def _create_graph_batch(self, data):
"""
Create a LabelBatch object from a list of
:class:`torch_geometric.data.Data` objects.
:param data: List of items to collate in a single batch.
:type data: list(torch_geometric.data.Data) | list(Graph)
:return: LabelBatch object all the graph collated in a single batch
disconnected graphs.
:rtype: LabelBatch
"""
batch = LabelBatch.from_data_list(data)
return batch
def _create_tensor_batch(self, data):
"""
Create a torch.Tensor object from a list of torch.Tensor objects.
:param data: torch.Tensor object of shape (N, ...) where N is the
number of data points.
:type data: torch.Tensor | LabelTensor
:return: reshaped torch.Tensor or LabelTensor object.
:rtype: torch.Tensor | LabelTensor
"""
out = data.reshape(-1, *data.shape[2:])
return out
def create_batch(self, data):
"""
Create a Batch object from a list of :class:`torch_geometric.data.Data`
objects.
:param data: List of items to collate in a single batch.
:type data: list
:return: Batch object.
:rtype: Batch | PinaBatch
"""
if isinstance(data[0], Data):
return self._create_graph_batch(data)
return self._create_tensor_batch(data)
# Override _retrive_data method for graph handling
def _retrive_data(self, data, idx_list):
"""
Retrieve data from the dataset given a list of indices.
:param dict data: Dictionary containing the data.
:param list idx_list: List of indices to retrieve.
:return: Dictionary containing the data at the given indices.
:rtype: dict
"""
# Return the data from the current condition
# If the data is a list of Data objects, create a Batch object
# If the data is a list of torch.Tensor objects, create a torch.Tensor
return {
k: (
self._create_graph_batch([v[i] for i in idx_list])
if isinstance(v, list)
else self._create_tensor_batch(v[idx_list])
)
for k, v in data.items()
}