55 lines
1.6 KiB
Python
55 lines
1.6 KiB
Python
import argparse
|
|
import sys
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import ReLU, Tanh, Softplus
|
|
|
|
from pina import PINN, LabelTensor, Plotter
|
|
from pina.model import FeedForward
|
|
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
|
from problems.stokes import Stokes
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Run PINA")
|
|
group = parser.add_mutually_exclusive_group(required=True)
|
|
group.add_argument("-s", "-save", action="store_true")
|
|
group.add_argument("-l", "-load", action="store_true")
|
|
parser.add_argument("id_run", help="number of run", type=int)
|
|
args = parser.parse_args()
|
|
|
|
|
|
stokes_problem = Stokes()
|
|
model = FeedForward(
|
|
layers=[10, 10, 10, 10],
|
|
output_variables=stokes_problem.output_variables,
|
|
input_variables=stokes_problem.input_variables,
|
|
func=Softplus,
|
|
)
|
|
|
|
pinn = PINN(
|
|
stokes_problem,
|
|
model,
|
|
lr=0.006,
|
|
error_norm='mse',
|
|
regularizer=1e-8)
|
|
|
|
if args.s:
|
|
|
|
pinn.span_pts(200, 'grid', locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
|
pinn.span_pts(2000, 'random', locations=['D'])
|
|
pinn.train(10000, 100)
|
|
with open('stokes_history_{}.txt'.format(args.id_run), 'w') as file_:
|
|
for i, losses in pinn.history_loss.items():
|
|
file_.write('{} {}\n'.format(i, sum(losses)))
|
|
pinn.save_state('pina.stokes')
|
|
|
|
else:
|
|
pinn.load_state('pina.stokes')
|
|
plotter = Plotter()
|
|
plotter.plot(pinn, components='ux')
|
|
plotter.plot(pinn, components='uy')
|
|
plotter.plot(pinn, components='p')
|
|
|
|
|