* Operation Interface Enhancement + Clarification - added set notation to all the geometry operations - added a warning to say sample_surface=True doesn't work * minor fix docs * fix operation_interface.py doc --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>
105 lines
3.8 KiB
Python
105 lines
3.8 KiB
Python
import torch
|
|
from .location import Location
|
|
from .operation_interface import OperationInterface
|
|
from ..utils import check_consistency
|
|
from ..label_tensor import LabelTensor
|
|
import random
|
|
|
|
|
|
class Union(OperationInterface):
|
|
""" PINA implementation of Unions of Domains."""
|
|
|
|
def __init__(self, geometries):
|
|
"""
|
|
PINA implementation of Unions of Domains.
|
|
Given two sets :math:`A` and :math:`B` then the
|
|
domain difference is defined as:
|
|
|
|
..:math:
|
|
A \cup B = \{x \mid x \in A \text{ or } x \in B\},
|
|
|
|
with :math:`x` a point in :math:`\mathbb{R}^N` and :math:`N`
|
|
the dimension of the geometry space.
|
|
|
|
:param list geometries: A list of geometries from 'pina.geometry'
|
|
such as 'EllipsoidDomain' or 'CartesianDomain'.
|
|
|
|
:Example:
|
|
# Create two ellipsoid domains
|
|
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
|
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
|
|
|
# Create a union of the ellipsoid domains
|
|
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
|
|
|
|
"""
|
|
super().__init__(geometries)
|
|
|
|
def is_inside(self, point, check_border=False):
|
|
"""Check if a point is inside the union domain.
|
|
|
|
:param point: Point to be checked.
|
|
:type point: LabelTensor
|
|
:param check_border: Check if the point is also on the frontier
|
|
of the ellipsoid, default False.
|
|
:type check_border: bool
|
|
:return: Returning True if the point is inside, False otherwise.
|
|
:rtype: bool
|
|
"""
|
|
for geometry in self.geometries:
|
|
if geometry.is_inside(point, check_border):
|
|
return True
|
|
return False
|
|
|
|
def sample(self, n, mode='random', variables='all'):
|
|
"""Sample routine for union domain.
|
|
|
|
:param n: Number of points to sample in the shape.
|
|
:type n: int
|
|
:param mode: Mode for sampling, defaults to 'random'.
|
|
Available modes include: random sampling, 'random'.
|
|
:type mode: str, optional
|
|
:param variables: pinn variable to be sampled, defaults to 'all'.
|
|
:type variables: str or list[str], optional
|
|
|
|
:Example:
|
|
# Create two ellipsoid domains
|
|
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
|
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
|
|
|
# Create a union of the ellipsoid domains
|
|
>>> union = Union([cartesian1, cartesian2])
|
|
|
|
>>> union.sample(n=5)
|
|
LabelTensor([[1.2128, 2.1991],
|
|
[1.3530, 2.4317],
|
|
[2.2562, 1.6605],
|
|
[0.8451, 1.9878],
|
|
[1.8623, 0.7102]])
|
|
|
|
>>> len(union.sample(n=5)
|
|
5
|
|
"""
|
|
sampled_points = []
|
|
|
|
# calculate the number of points to sample for each geometry and the remainder
|
|
remainder = n % len(self.geometries)
|
|
num_points = n // len(self.geometries)
|
|
|
|
# sample the points
|
|
# NB. geometries as shuffled since if we sample
|
|
# multiple times just one point, we would end
|
|
# up sampling only from the first geometry.
|
|
iter_ = random.sample(self.geometries, len(self.geometries))
|
|
for i, geometry in enumerate(iter_):
|
|
# int(i < remainder) is one only if we have a remainder
|
|
# different than zero. Notice that len(geometries) is
|
|
# always smaller than remaider.
|
|
sampled_points.append(geometry.sample(
|
|
num_points + int(i < remainder), mode, variables))
|
|
# in case number of sampled points is smaller than the number of geometries
|
|
if len(sampled_points) >= n:
|
|
break
|
|
|
|
return LabelTensor(torch.cat(sampled_points), labels=self.variables)
|