263 lines
9.3 KiB
Python
263 lines
9.3 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.label_tensor import LabelTensor
|
|
|
|
data = torch.rand((20, 3))
|
|
labels_column = {
|
|
1: {
|
|
"name": "space",
|
|
"dof": ['x', 'y', 'z']
|
|
}
|
|
}
|
|
labels_row = {
|
|
0: {
|
|
"name": "samples",
|
|
"dof": range(20)
|
|
}
|
|
}
|
|
labels_list = ['x', 'y', 'z']
|
|
labels_all = labels_column | labels_row
|
|
|
|
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all, labels_list])
|
|
def test_constructor(labels):
|
|
print(LabelTensor(data, labels))
|
|
|
|
def test_wrong_constructor():
|
|
with pytest.raises(ValueError):
|
|
LabelTensor(data, ['a', 'b'])
|
|
|
|
@pytest.mark.parametrize("labels", [labels_column, labels_all])
|
|
@pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}])
|
|
def test_extract_column(labels, labels_te):
|
|
tensor = LabelTensor(data, labels)
|
|
new = tensor.extract(labels_te)
|
|
assert new.ndim == tensor.ndim
|
|
assert new.shape[1] == 1
|
|
assert new.shape[0] == 20
|
|
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
|
|
|
|
@pytest.mark.parametrize("labels", [labels_row, labels_all])
|
|
@pytest.mark.parametrize("labels_te", [{'samples': [2]}])
|
|
def test_extract_row(labels, labels_te):
|
|
tensor = LabelTensor(data, labels)
|
|
new = tensor.extract(labels_te)
|
|
assert new.ndim == tensor.ndim
|
|
assert new.shape[1] == 3
|
|
assert new.shape[0] == 1
|
|
assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
|
|
|
|
@pytest.mark.parametrize("labels_te", [
|
|
{'samples': [2], 'space': ['z']},
|
|
{'space': 'z', 'samples': 2}
|
|
])
|
|
def test_extract_2D(labels_te):
|
|
labels = labels_all
|
|
tensor = LabelTensor(data, labels)
|
|
new = tensor.extract(labels_te)
|
|
assert new.ndim == tensor.ndim
|
|
assert new.shape[1] == 1
|
|
assert new.shape[0] == 1
|
|
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new))
|
|
|
|
def test_extract_3D():
|
|
data = torch.rand(20, 3, 4)
|
|
labels = {
|
|
1: {
|
|
"name": "space",
|
|
"dof": ['x', 'y', 'z']
|
|
},
|
|
2: {
|
|
"name": "time",
|
|
"dof": range(4)
|
|
},
|
|
}
|
|
labels_te = {
|
|
'space': ['x', 'z'],
|
|
'time': range(1, 4)
|
|
}
|
|
|
|
tensor = LabelTensor(data, labels)
|
|
new = tensor.extract(labels_te)
|
|
tensor2 = LabelTensor(data, labels)
|
|
assert new.ndim == tensor.ndim
|
|
assert new.shape[0] == 20
|
|
assert new.shape[1] == 2
|
|
assert new.shape[2] == 3
|
|
assert torch.all(torch.isclose(
|
|
data[:, 0::2, 1:4].reshape(20, 2, 3),
|
|
new
|
|
))
|
|
assert tensor2.ndim == tensor.ndim
|
|
assert tensor2.shape == tensor.shape
|
|
assert tensor.full_labels == tensor2.full_labels
|
|
assert new.shape != tensor.shape
|
|
|
|
def test_concatenation_3D():
|
|
data_1 = torch.rand(20, 3, 4)
|
|
labels_1 = ['x', 'y', 'z', 'w']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(50, 3, 4)
|
|
labels_2 = ['x', 'y', 'z', 'w']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt_cat = LabelTensor.cat([lt1, lt2])
|
|
assert lt_cat.shape == (70, 3, 4)
|
|
assert lt_cat.full_labels[0]['dof'] == range(70)
|
|
assert lt_cat.full_labels[1]['dof'] == range(3)
|
|
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
|
|
|
data_1 = torch.rand(20, 3, 4)
|
|
labels_1 = ['x', 'y', 'z', 'w']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 2, 4)
|
|
labels_2 = ['x', 'y', 'z', 'w']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt_cat = LabelTensor.cat([lt1, lt2], dim=1)
|
|
assert lt_cat.shape == (20, 5, 4)
|
|
assert lt_cat.full_labels[0]['dof'] == range(20)
|
|
assert lt_cat.full_labels[1]['dof'] == range(5)
|
|
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
|
|
|
data_1 = torch.rand(20, 3, 2)
|
|
labels_1 = ['x', 'y']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 3, 3)
|
|
labels_2 = ['z', 'w', 'a']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
|
|
assert lt_cat.shape == (20, 3, 5)
|
|
assert lt_cat.full_labels[2]['dof'] == ['x', 'y', 'z', 'w', 'a']
|
|
assert lt_cat.full_labels[0]['dof'] == range(20)
|
|
assert lt_cat.full_labels[1]['dof'] == range(3)
|
|
|
|
data_1 = torch.rand(20, 2, 4)
|
|
labels_1 = ['x', 'y', 'z', 'w']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 3, 4)
|
|
labels_2 = ['x', 'y', 'z', 'w']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
with pytest.raises(ValueError):
|
|
LabelTensor.cat([lt1, lt2], dim=2)
|
|
data_1 = torch.rand(20, 3, 2)
|
|
labels_1 = ['x', 'y']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 3, 3)
|
|
labels_2 = ['x', 'w', 'a']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt_cat = LabelTensor.cat([lt1, lt2], dim=2)
|
|
assert lt_cat.shape == (20, 3, 5)
|
|
assert lt_cat.full_labels[2]['dof'] == range(5)
|
|
assert lt_cat.full_labels[0]['dof'] == range(20)
|
|
assert lt_cat.full_labels[1]['dof'] == range(3)
|
|
|
|
|
|
def test_summation():
|
|
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
|
lt2 = LabelTensor(torch.ones(30,3), ['x', 'y', 'z'])
|
|
with pytest.raises(RuntimeError):
|
|
LabelTensor.summation([lt1, lt2])
|
|
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
|
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
|
lt_sum = LabelTensor.summation([lt1, lt2])
|
|
assert lt_sum.ndim == lt_sum.ndim
|
|
assert lt_sum.shape[0] == 20
|
|
assert lt_sum.shape[1] == 3
|
|
assert lt_sum.full_labels == labels_all
|
|
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
|
lt1 = LabelTensor(torch.ones(20,3), labels_all)
|
|
lt2 = LabelTensor(torch.ones(20,3), labels_all)
|
|
lt3 = LabelTensor(torch.zeros(20, 3), labels_all)
|
|
lt_sum = LabelTensor.summation([lt1, lt2, lt3])
|
|
assert lt_sum.ndim == lt_sum.ndim
|
|
assert lt_sum.shape[0] == 20
|
|
assert lt_sum.shape[1] == 3
|
|
assert lt_sum.full_labels == labels_all
|
|
assert torch.eq(lt_sum.tensor, torch.ones(20,3)*2).all()
|
|
|
|
def test_append_3D():
|
|
data_1 = torch.rand(20, 3, 2)
|
|
labels_1 = ['x', 'y']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 3, 2)
|
|
labels_2 = ['z', 'w']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt1 = lt1.append(lt2)
|
|
assert lt1.shape == (20, 3, 4)
|
|
assert lt1.full_labels[0]['dof'] == range(20)
|
|
assert lt1.full_labels[1]['dof'] == range(3)
|
|
assert lt1.full_labels[2]['dof'] == ['x', 'y', 'z', 'w']
|
|
|
|
def test_append_2D():
|
|
data_1 = torch.rand(20, 2)
|
|
labels_1 = ['x', 'y']
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 2)
|
|
labels_2 = ['z', 'w']
|
|
lt2 = LabelTensor(data_2, labels_2)
|
|
lt1 = lt1.append(lt2, mode='cross')
|
|
assert lt1.shape == (400, 4)
|
|
assert lt1.full_labels[0]['dof'] == range(400)
|
|
assert lt1.full_labels[1]['dof'] == ['x', 'y', 'z', 'w']
|
|
|
|
def test_vstack_3D():
|
|
data_1 = torch.rand(20, 3, 2)
|
|
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 3, 2)
|
|
labels_1 = {1:{'dof': ['a', 'b', 'c'], 'name': 'first'}, 2: {'dof': ['x', 'y'], 'name': 'second'}}
|
|
lt2 = LabelTensor(data_2, labels_1)
|
|
lt_stacked = LabelTensor.vstack([lt1, lt2])
|
|
assert lt_stacked.shape == (40, 3, 2)
|
|
assert lt_stacked.full_labels[0]['dof'] == range(40)
|
|
assert lt_stacked.full_labels[1]['dof'] == ['a', 'b', 'c']
|
|
assert lt_stacked.full_labels[2]['dof'] == ['x', 'y']
|
|
assert lt_stacked.full_labels[1]['name'] == 'first'
|
|
assert lt_stacked.full_labels[2]['name'] == 'second'
|
|
|
|
def test_vstack_2D():
|
|
data_1 = torch.rand(20, 2)
|
|
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
|
|
lt1 = LabelTensor(data_1, labels_1)
|
|
data_2 = torch.rand(20, 2)
|
|
labels_1 = { 1: {'dof': ['x', 'y'], 'name': 'second'}}
|
|
lt2 = LabelTensor(data_2, labels_1)
|
|
lt_stacked = LabelTensor.vstack([lt1, lt2])
|
|
assert lt_stacked.shape == (40, 2)
|
|
assert lt_stacked.full_labels[0]['dof'] == range(40)
|
|
assert lt_stacked.full_labels[1]['dof'] == ['x', 'y']
|
|
assert lt_stacked.full_labels[0]['name'] == 0
|
|
assert lt_stacked.full_labels[1]['name'] == 'second'
|
|
|
|
def test_sorting():
|
|
data = torch.ones(20, 5)
|
|
data[:,0] = data[:,0]*4
|
|
data[:,1] = data[:,1]*2
|
|
data[:,2] = data[:,2]
|
|
data[:,3] = data[:,3]*5
|
|
data[:,4] = data[:,4]*3
|
|
labels = ['d', 'b', 'a', 'e', 'c']
|
|
lt_data = LabelTensor(data, labels)
|
|
lt_sorted = LabelTensor.sort_labels(lt_data)
|
|
assert lt_sorted.shape == (20,5)
|
|
assert lt_sorted.labels == ['a', 'b', 'c', 'd', 'e']
|
|
assert torch.eq(lt_sorted.tensor[:,0], torch.ones(20) * 1).all()
|
|
assert torch.eq(lt_sorted.tensor[:,1], torch.ones(20) * 2).all()
|
|
assert torch.eq(lt_sorted.tensor[:,2], torch.ones(20) * 3).all()
|
|
assert torch.eq(lt_sorted.tensor[:,3], torch.ones(20) * 4).all()
|
|
assert torch.eq(lt_sorted.tensor[:,4], torch.ones(20) * 5).all()
|
|
|
|
data = torch.ones(20, 4, 5)
|
|
data[:,0,:] = data[:,0]*4
|
|
data[:,1,:] = data[:,1]*2
|
|
data[:,2,:] = data[:,2]
|
|
data[:,3,:] = data[:,3]*3
|
|
labels = {1: {'dof': ['d', 'b', 'a', 'c'], 'name': 1}}
|
|
lt_data = LabelTensor(data, labels)
|
|
lt_sorted = LabelTensor.sort_labels(lt_data, dim=1)
|
|
assert lt_sorted.shape == (20,4, 5)
|
|
assert lt_sorted.full_labels[1]['dof'] == ['a', 'b', 'c', 'd']
|
|
assert torch.eq(lt_sorted.tensor[:,0,:], torch.ones(20,5) * 1).all()
|
|
assert torch.eq(lt_sorted.tensor[:,1,:], torch.ones(20,5) * 2).all()
|
|
assert torch.eq(lt_sorted.tensor[:,2,:], torch.ones(20,5) * 3).all()
|
|
assert torch.eq(lt_sorted.tensor[:,3,:], torch.ones(20,5) * 4).all()
|