123 lines
4.6 KiB
Python
123 lines
4.6 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.dataset import SamplePointDataset, SamplePointLoader, DataPointDataset
|
|
from pina import LabelTensor, Condition
|
|
from pina.equation import Equation
|
|
from pina.geometry import CartesianDomain
|
|
from pina.problem import SpatialProblem
|
|
from pina.model import FeedForward
|
|
from pina.operators import laplacian
|
|
from pina.equation.equation_factory import FixedValue
|
|
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
|
torch.sin(input_.extract(['y'])*torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
|
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3': Condition(
|
|
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4': Condition(
|
|
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'D': Condition(
|
|
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
equation=my_laplace),
|
|
'data': Condition(
|
|
input_points=in_,
|
|
output_points=out_),
|
|
'data2': Condition(
|
|
input_points=in2_,
|
|
output_points=out2_)
|
|
}
|
|
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
poisson = Poisson()
|
|
poisson.discretise_domain(10, 'grid', locations=boundaries)
|
|
|
|
def test_sample():
|
|
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
|
assert len(sample_dataset) == 140
|
|
assert sample_dataset.pts.shape == (140, 2)
|
|
assert sample_dataset.pts.labels == ['x', 'y']
|
|
assert sample_dataset.condition_indeces.dtype == torch.int64
|
|
assert sample_dataset.condition_indeces.max() == torch.tensor(4)
|
|
assert sample_dataset.condition_indeces.min() == torch.tensor(0)
|
|
|
|
def test_data():
|
|
dataset = DataPointDataset(poisson, device='cpu')
|
|
assert len(dataset) == 61
|
|
assert dataset.input_pts.shape == (61, 2)
|
|
assert dataset.input_pts.labels == ['x', 'y']
|
|
assert dataset.output_pts.shape == (61, 1 )
|
|
assert dataset.output_pts.labels == ['u']
|
|
assert dataset.condition_indeces.dtype == torch.int64
|
|
assert dataset.condition_indeces.max() == torch.tensor(1)
|
|
assert dataset.condition_indeces.min() == torch.tensor(0)
|
|
|
|
def test_loader():
|
|
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
|
data_dataset = DataPointDataset(poisson, device='cpu')
|
|
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
|
|
|
for batch in loader:
|
|
assert len(batch) in [2, 3]
|
|
assert batch['pts'].shape[0] <= 10
|
|
assert batch['pts'].requires_grad == True
|
|
assert batch['pts'].labels == ['x', 'y']
|
|
|
|
loader2 = SamplePointLoader(sample_dataset, data_dataset, batch_size=None)
|
|
assert len(list(loader2)) == 2
|
|
|
|
def test_loader2():
|
|
poisson2 = Poisson()
|
|
del poisson.conditions['data2']
|
|
del poisson2.conditions['data']
|
|
poisson2.discretise_domain(10, 'grid', locations=boundaries)
|
|
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
|
data_dataset = DataPointDataset(poisson, device='cpu')
|
|
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
|
|
|
for batch in loader:
|
|
assert len(batch) == 2 # only phys condtions
|
|
assert batch['pts'].shape[0] <= 10
|
|
assert batch['pts'].requires_grad == True
|
|
assert batch['pts'].labels == ['x', 'y']
|
|
|
|
def test_loader3():
|
|
poisson2 = Poisson()
|
|
del poisson.conditions['gamma1']
|
|
del poisson.conditions['gamma2']
|
|
del poisson.conditions['gamma3']
|
|
del poisson.conditions['gamma4']
|
|
del poisson.conditions['D']
|
|
sample_dataset = SamplePointDataset(poisson, device='cpu')
|
|
data_dataset = DataPointDataset(poisson, device='cpu')
|
|
loader = SamplePointLoader(sample_dataset, data_dataset, batch_size=10)
|
|
|
|
for batch in loader:
|
|
assert len(batch) == 2 # only phys condtions
|
|
assert batch['pts'].shape[0] <= 10
|
|
assert batch['pts'].requires_grad == True
|
|
assert batch['pts'].labels == ['x', 'y']
|