387 lines
13 KiB
Python
387 lines
13 KiB
Python
"""Module for Self-Adaptive PINN."""
|
|
|
|
from copy import deepcopy
|
|
import torch
|
|
|
|
from ...utils import check_consistency
|
|
from ...problem import InverseProblem
|
|
from ..solver import MultiSolverInterface
|
|
from .pinn_interface import PINNInterface
|
|
|
|
|
|
class Weights(torch.nn.Module):
|
|
"""
|
|
Implementation of the mask model for the self-adaptive weights of the
|
|
:class:`SelfAdaptivePINN` solver.
|
|
"""
|
|
|
|
def __init__(self, func):
|
|
"""
|
|
Initialization of the :class:`Weights` class.
|
|
|
|
:param torch.nn.Module func: the mask model.
|
|
"""
|
|
super().__init__()
|
|
check_consistency(func, torch.nn.Module)
|
|
self.sa_weights = torch.nn.Parameter(torch.Tensor())
|
|
self.func = func
|
|
|
|
def forward(self):
|
|
"""
|
|
Forward pass implementation for the mask module.
|
|
|
|
:return: evaluation of self adaptive weights through the mask.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return self.func(self.sa_weights)
|
|
|
|
|
|
class SelfAdaptivePINN(PINNInterface, MultiSolverInterface):
|
|
r"""
|
|
Self-Adaptive Physics-Informed Neural Network (SelfAdaptivePINN) solver
|
|
class. This class implements the Self-Adaptive Physics-Informed Neural
|
|
Network solver, using a user specified ``model`` to solve a specific
|
|
``problem``. It can be used to solve both forward and inverse problems.
|
|
|
|
The Self-Adapive Physics-Informed Neural Network solver aims to find the
|
|
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
|
|
problem:
|
|
|
|
.. math::
|
|
|
|
\begin{cases}
|
|
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
|
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
|
\mathbf{x}\in\partial\Omega
|
|
\end{cases}
|
|
|
|
integrating pointwise loss evaluation using a mask :math:m and self-adaptive
|
|
weights, which allow the model to focus on regions of the domain where the
|
|
residual is higher.
|
|
|
|
The loss function to solve the problem is
|
|
|
|
.. math::
|
|
|
|
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
|
|
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
|
|
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
|
|
\sum_{i=1}^{N_{\partial\Omega}}
|
|
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
|
|
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
|
|
\right),
|
|
|
|
denoting the self adaptive weights as
|
|
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
|
|
:math:`\lambda_{\partial \Omega}^1, \dots,
|
|
\lambda_{\Omega}^{N_\partial \Omega}`
|
|
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
|
|
|
|
The Self-Adaptive Physics-Informed Neural Network solver identifies the
|
|
solution and appropriate self adaptive weights by solving the following
|
|
optimization problem:
|
|
|
|
.. math::
|
|
|
|
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
|
|
\mathcal{L} ,
|
|
|
|
where :math:`w` denotes the network parameters, and :math:`\mathcal{L}` is a
|
|
specific loss function, , typically the MSE:
|
|
|
|
.. math::
|
|
\mathcal{L}(v) = \| v \|^2_2.
|
|
|
|
.. seealso::
|
|
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
|
|
*Self-adaptive physics-informed neural networks.*
|
|
Journal of Computational Physics 474 (2023): 111722.
|
|
DOI: `10.1016/j.jcp.2022.111722
|
|
<https://doi.org/10.1016/j.jcp.2022.111722>`_.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
problem,
|
|
model,
|
|
weight_function=torch.nn.Sigmoid(),
|
|
optimizer_model=None,
|
|
optimizer_weights=None,
|
|
scheduler_model=None,
|
|
scheduler_weights=None,
|
|
weighting=None,
|
|
loss=None,
|
|
):
|
|
"""
|
|
Initialization of the :class:`SelfAdaptivePINN` class.
|
|
|
|
:param AbstractProblem problem: The problem to be solved.
|
|
:param torch.nn.Module model: The model to be used.
|
|
:param torch.nn.Module weight_function: The Self-Adaptive mask model.
|
|
Default is ``torch.nn.Sigmoid()``.
|
|
:param Optimizer optimizer_model: The optimizer of the ``model``.
|
|
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
|
Default is ``None``.
|
|
:param Optimizer optimizer_weights: The optimizer of the
|
|
``weight_function``.
|
|
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
|
Default is ``None``.
|
|
:param Scheduler scheduler_model: Learning rate scheduler for the
|
|
``model``.
|
|
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
|
scheduler is used. Default is ``None``.
|
|
:param Scheduler scheduler_weights: Learning rate scheduler for the
|
|
``weight_function``.
|
|
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
|
scheduler is used. Default is ``None``.
|
|
:param WeightingInterface weighting: The weighting schema to be used.
|
|
If `None`, no weighting schema is used. Default is ``None``.
|
|
:param torch.nn.Module loss: The loss function to be minimized.
|
|
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
|
Default is `None`.
|
|
"""
|
|
# check consistency weitghs_function
|
|
check_consistency(weight_function, torch.nn.Module)
|
|
|
|
# create models for weights
|
|
weights_dict = {}
|
|
for condition_name in problem.conditions:
|
|
weights_dict[condition_name] = Weights(weight_function)
|
|
weights_dict = torch.nn.ModuleDict(weights_dict)
|
|
|
|
super().__init__(
|
|
models=[model, weights_dict],
|
|
problem=problem,
|
|
optimizers=[optimizer_model, optimizer_weights],
|
|
schedulers=[scheduler_model, scheduler_weights],
|
|
weighting=weighting,
|
|
loss=loss,
|
|
)
|
|
|
|
# Set automatic optimization to False
|
|
self.automatic_optimization = False
|
|
|
|
self._vectorial_loss = deepcopy(self.loss)
|
|
self._vectorial_loss.reduction = "none"
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass.
|
|
|
|
:param LabelTensor x: Input tensor.
|
|
:return: The output of the neural network.
|
|
:rtype: LabelTensor
|
|
"""
|
|
return self.model(x)
|
|
|
|
def training_step(self, batch):
|
|
"""
|
|
Solver training step, overridden to perform manual optimization.
|
|
|
|
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
|
tuple containing a condition name and a dictionary of points.
|
|
:return: The aggregated loss.
|
|
:rtype: LabelTensor
|
|
"""
|
|
# Weights optimization
|
|
self.optimizer_weights.instance.zero_grad()
|
|
loss = super().training_step(batch)
|
|
self.manual_backward(-loss)
|
|
self.optimizer_weights.instance.step()
|
|
|
|
# Model optimization
|
|
self.optimizer_model.instance.zero_grad()
|
|
loss = super().training_step(batch)
|
|
self.manual_backward(loss)
|
|
self.optimizer_model.instance.step()
|
|
|
|
return loss
|
|
|
|
def configure_optimizers(self):
|
|
"""
|
|
Optimizer configuration.
|
|
|
|
:return: The optimizers and the schedulers
|
|
:rtype: tuple[list[Optimizer], list[Scheduler]]
|
|
"""
|
|
# If the problem is an InverseProblem, add the unknown parameters
|
|
# to the parameters to be optimized
|
|
self.optimizer_model.hook(self.model.parameters())
|
|
self.optimizer_weights.hook(self.weights_dict.parameters())
|
|
if isinstance(self.problem, InverseProblem):
|
|
self.optimizer_model.instance.add_param_group(
|
|
{
|
|
"params": [
|
|
self._params[var]
|
|
for var in self.problem.unknown_variables
|
|
]
|
|
}
|
|
)
|
|
self.scheduler_model.hook(self.optimizer_model)
|
|
self.scheduler_weights.hook(self.optimizer_weights)
|
|
return (
|
|
[self.optimizer_model.instance, self.optimizer_weights.instance],
|
|
[self.scheduler_model.instance, self.scheduler_weights.instance],
|
|
)
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx):
|
|
"""
|
|
This method is called at the end of each training batch and overrides
|
|
the PyTorch Lightning implementation to log checkpoints.
|
|
|
|
:param torch.Tensor outputs: The ``model``'s output for the current
|
|
batch.
|
|
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
|
tuple containing a condition name and a dictionary of points.
|
|
:param int batch_idx: The index of the current batch.
|
|
"""
|
|
# increase by one the counter of optimization to save loggers
|
|
(
|
|
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
|
|
) += 1
|
|
|
|
return super().on_train_batch_end(outputs, batch, batch_idx)
|
|
|
|
def on_train_start(self):
|
|
"""
|
|
This method is called at the start of the training process to set the
|
|
self-adaptive weights as parameters of the mask model.
|
|
|
|
:raises NotImplementedError: If the batch size is not ``None``.
|
|
"""
|
|
if self.trainer.batch_size is not None:
|
|
raise NotImplementedError(
|
|
"SelfAdaptivePINN only works with full "
|
|
"batch size, set batch_size=None inside "
|
|
"the Trainer to use the solver."
|
|
)
|
|
device = torch.device(
|
|
self.trainer._accelerator_connector._accelerator_flag
|
|
)
|
|
|
|
# Initialize the self adaptive weights only for training points
|
|
for (
|
|
condition_name,
|
|
tensor,
|
|
) in self.trainer.data_module.train_dataset.input.items():
|
|
self.weights_dict[condition_name].sa_weights.data = torch.rand(
|
|
(tensor.shape[0], 1), device=device
|
|
)
|
|
return super().on_train_start()
|
|
|
|
def on_load_checkpoint(self, checkpoint):
|
|
"""
|
|
Override of the Pytorch Lightning ``on_load_checkpoint`` method to
|
|
handle checkpoints for Self-Adaptive Weights. This method should not be
|
|
overridden, if not intentionally.
|
|
|
|
:param dict checkpoint: Pytorch Lightning checkpoint dict.
|
|
"""
|
|
# First initialize self-adaptive weights with correct shape,
|
|
# then load the values from the checkpoint.
|
|
for condition_name, _ in self.problem.input_pts.items():
|
|
shape = checkpoint["state_dict"][
|
|
f"_pina_models.1.{condition_name}.sa_weights"
|
|
].shape
|
|
self.weights_dict[condition_name].sa_weights.data = torch.rand(
|
|
shape
|
|
)
|
|
return super().on_load_checkpoint(checkpoint)
|
|
|
|
def loss_phys(self, samples, equation):
|
|
"""
|
|
Computes the physics loss for the physics-informed solver based on the
|
|
provided samples and equation.
|
|
|
|
:param LabelTensor samples: The samples to evaluate the physics loss.
|
|
:param EquationInterface equation: The governing equation.
|
|
:return: The computed physics loss.
|
|
:rtype: LabelTensor
|
|
"""
|
|
residual = self.compute_residual(samples, equation)
|
|
weights = self.weights_dict[self.current_condition_name].forward()
|
|
loss_value = self._vectorial_loss(
|
|
torch.zeros_like(residual, requires_grad=True), residual
|
|
)
|
|
return self._vect_to_scalar(weights * loss_value)
|
|
|
|
def _vect_to_scalar(self, loss_value):
|
|
"""
|
|
Computation of the scalar loss.
|
|
|
|
:param LabelTensor loss_value: the tensor of pointwise losses.
|
|
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
|
|
:return: The computed scalar loss.
|
|
:rtype: LabelTensor
|
|
"""
|
|
if self.loss.reduction == "mean":
|
|
ret = torch.mean(loss_value)
|
|
elif self.loss.reduction == "sum":
|
|
ret = torch.sum(loss_value)
|
|
else:
|
|
raise RuntimeError(
|
|
f"Invalid reduction, got {self.loss.reduction} "
|
|
"but expected mean or sum."
|
|
)
|
|
return ret
|
|
|
|
@property
|
|
def model(self):
|
|
"""
|
|
The model.
|
|
|
|
:return: The model.
|
|
:rtype: torch.nn.Module
|
|
"""
|
|
return self.models[0]
|
|
|
|
@property
|
|
def weights_dict(self):
|
|
"""
|
|
The self-adaptive weights.
|
|
|
|
:return: The self-adaptive weights.
|
|
:rtype: torch.nn.Module
|
|
"""
|
|
return self.models[1]
|
|
|
|
@property
|
|
def scheduler_model(self):
|
|
"""
|
|
The scheduler associated to the model.
|
|
|
|
:return: The scheduler for the model.
|
|
:rtype: Scheduler
|
|
"""
|
|
return self.schedulers[0]
|
|
|
|
@property
|
|
def scheduler_weights(self):
|
|
"""
|
|
The scheduler associated to the mask model.
|
|
|
|
:return: The scheduler for the mask model.
|
|
:rtype: Scheduler
|
|
"""
|
|
return self.schedulers[1]
|
|
|
|
@property
|
|
def optimizer_model(self):
|
|
"""
|
|
Returns the optimizer associated to the model.
|
|
|
|
:return: The optimizer for the model.
|
|
:rtype: Optimizer
|
|
"""
|
|
return self.optimizers[0]
|
|
|
|
@property
|
|
def optimizer_weights(self):
|
|
"""
|
|
The optimizer associated to the mask model.
|
|
|
|
:return: The optimizer for the mask model.
|
|
:rtype: Optimizer
|
|
"""
|
|
return self.optimizers[1]
|