372 lines
174 KiB
Plaintext
Vendored
372 lines
174 KiB
Plaintext
Vendored
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "dbbb73cb-a632-4056-bbca-b483b2ad5f9c",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Tutorial: Resolution of an inverse problem\n",
|
|
"\n",
|
|
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial7/tutorial.ipynb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "84508f26-1ba6-4b59-926b-3e340d632a15",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Introduction to the inverse problem"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "cae54664-4572-49df-8b2d-9e7dd1e45ec0",
|
|
"metadata": {},
|
|
"source": [
|
|
"This tutorial shows how to solve an inverse Poisson problem with Physics-Informed Neural Networks. The problem definition is that of a Poisson problem with homogeneous boundary conditions and it reads:\n",
|
|
"\\begin{equation}\n",
|
|
"\\begin{cases}\n",
|
|
"\\Delta u = e^{-2(x-\\mu_1)^2-2(y-\\mu_2)^2} \\text{ in } \\Omega\\, ,\\\\\n",
|
|
"u = 0 \\text{ on }\\partial \\Omega,\\\\\n",
|
|
"u(\\mu_1, \\mu_2) = \\text{ data}\n",
|
|
"\\end{cases}\n",
|
|
"\\end{equation}\n",
|
|
"where $\\Omega$ is a square domain $[-2, 2] \\times [-2, 2]$, and $\\partial \\Omega=\\Gamma_1 \\cup \\Gamma_2 \\cup \\Gamma_3 \\cup \\Gamma_4$ is the union of the boundaries of the domain.\n",
|
|
"\n",
|
|
"This kind of problem, namely the \"inverse problem\", has two main goals:\n",
|
|
"- find the solution $u$ that satisfies the Poisson equation;\n",
|
|
"- find the unknown parameters ($\\mu_1$, $\\mu_2$) that better fit some given data (third equation in the system above).\n",
|
|
"\n",
|
|
"In order to achieve both goals we will need to define an `InverseProblem` in PINA."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c1f8cb1b-c1bc-4495-96e2-ce8e9102fe56",
|
|
"metadata": {},
|
|
"source": [
|
|
"Let's start with useful imports."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "00d1027d-13f2-4619-9ff7-a740568f13ff",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"## routine needed to run the notebook on Google Colab\n",
|
|
"try:\n",
|
|
" import google.colab\n",
|
|
" IN_COLAB = True\n",
|
|
"except:\n",
|
|
" IN_COLAB = False\n",
|
|
"if IN_COLAB:\n",
|
|
" !pip install \"pina-mathlab\"\n",
|
|
" \n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import torch\n",
|
|
"from pytorch_lightning.callbacks import Callback\n",
|
|
"from pina.problem import SpatialProblem, InverseProblem\n",
|
|
"from pina.operators import laplacian\n",
|
|
"from pina.model import FeedForward\n",
|
|
"from pina.equation import Equation, FixedValue\n",
|
|
"from pina import Condition, Trainer\n",
|
|
"from pina.solvers import PINN\n",
|
|
"from pina.geometry import CartesianDomain"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "5138afdf-bff6-46bf-b423-a22673190687",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then, we import the pre-saved data, for ($\\mu_1$, $\\mu_2$)=($0.5$, $0.5$). These two values are the optimal parameters that we want to find through the neural network training. In particular, we import the `input_points`(the spatial coordinates), and the `output_points` (the corresponding $u$ values evaluated at the `input_points`)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "2c55d972-09a9-41de-9400-ba051c28cdcb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"data_output = torch.load('data/pinn_solution_0.5_0.5').detach()\n",
|
|
"data_input = torch.load('data/pts_0.5_0.5')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6541ffbe-7940-421a-9048-a796ec56f1d6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Moreover, let's plot also the data points and the reference solution: this is the expected output of the neural network."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "55cef553-7495-401d-9d17-1acff8ec5953",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d3hU17m4+65dp2vUhYQkBIjem8EY927jhnvvvaWdJCc9OSknOYlTHMd27DiJ4ziOe+8djE1vAoneBAh1Td9t3T/2sCHn5udf7o3jnHD4nmce9GpvzZ6Zb/aa4V3f/paQUnIoDsWhOBSH4uAN5Z/9AA7FoTgUh+JQ/GPj0EB/KA7FoTgUB3kcGugPxaE4FIfiII9DA/2hOBSH4lAc5HFooD8Uh+JQHIqDPLR/9gP4uKioqJBDhgz5Zz+MQ3EoDsX/8Fi6dGmXlLLy77mPk46Jyu4e92873qrCq1LKk/+e432a8T96oB8yZAhLliz5Zz+MQ3EoDsX/8BBCbPt776O7x2XRqw1/077qoA0Vf+/xPs34Hz3QH4pDcSgOxacVEvDw/tkP4x8Shwb6Q3EoDsWhACQSW/5t6uZfLQ4N9IfiUByKQ1GMQ9/oD8WhOBSH4iAOicQ9SFvCHBroD8WhOBSHohgeB+dA/3fX0Qsh6oUQbwsh1gkhWoQQd/yVfYQQ4udCiI1CiFVCiCl/73EPxaE4FIfikwwJuMi/6favFp/EN3oH+JyUcpkQIg4sFUK8LqVce8A+pwDNxdthwK+K//6PD1n4AJl9GPTJiOi1YC/ByzwE+jiU6I1gr8TL/Bq0kSixW8BZh5e+D9QmlPjt4GzES/8S1AaU+J3gbMNL3w1qDUr8M+Duwkv/HJQKlNhnwOvGS/8URAIl/nmQA3ipn4AIFzlXZB0l/jmQHl76vwBQYp8HoeClfgzSRol/FkQYL/VfIHNFThR5ACV2JyjleOm7wOtCid0Oai1e6i5w96DEbgWtES/1U3C3+89PG46X+jm4W1BiN4A22n9+ThtK9DrQJ+Jl7gV7DUr0KtCn4WbuR1rLUaOXI4zDcTMPIq1FKJGLUcyjcLO/QxYWoEQuQA0dj5P5I7LwNkr4HNTwKTjZx5H51xChuWiRM3Cyz+DmX0QNnYQWORcn9yJu7hkU81j06EU4uddwc4+jmHPQIpfhFd7Byf4RxZiJFr0az5qPk3kYxZiCFr0ez1qEk3kIRZ+AFrsRz16Ok/41ij4GLXYL0l6DnbkXRRuOFrsd6azHTv8SoQ5Bj9+JdLZgp3+BUGrRE59FOu046Z+BUoEe/zzS24uTuguUJHr8C0ivDyf1Y1Ci6PF/Q8oMzsB/gTDQE/8G0sFO/RBQ0ONfAAR26kcgHfTEF0CY2AM/AplDS3weIeL+dm8ALf45hFKGnfov8HrQ4ncilBr/eF4Haux2hNbgPx53J2rsVoQ2FCf1M3C3osZuQmij/Peos6GY0/F4mV+BvRYlejXoU5GZX4O9AhG5HGHO+qedn590HKzf6P/ugV5KuRvYXfw5JYRYB9QBBw70ZwK/l35P5A+FEEkhxKDi3/6PDenuRvbeCOSh8AGeVJDZn4HMQeF9XIDMvQewhOxDILOAiStdyP8JZKrIBcg/C3IA0HG9NBTeBNkD6HheH9JaBN4eQMPzOpFOG7g7AAXX3eVvczb67Gz1j+34L7VrbwBhgr0c8HCdFlCqwVros70SoTUjC+8ADq61BGFMR+ZfAWzcwocQOg5yz/hsLYDQmZB7DCjgWh9A+ALIPlzk+YjIlcjMg0C+yDciM78KmMjtuOlfADm8wvuo8c/jpu4q8ny0xBdxU/6g5RUWIBNfxk39wGfrA6TXi5v6rv88rQ9AprCL7FkLkLKAM/Bd//6sBYCDM/A9II9XWIAA7IHvB4xQcAZ+VNx/PqDhpH9SPP57SARu5u4DWOJmfg0yi8e7SOnhZh8GmQZMpFfAyz9ZzKmJlFm8wivg9QI6yAHcwgLw9gI60utG2quRbjug+O8xdyfS2VTk7UgvhXTWAeAVcy3tlYDEc1oRSime9RHg4dmrENpQvMK7gINnL0XRp+DmXy3m8EM082i83HOAjVf4ACU0Fy/3Z6CAV5iPEj4fL/uHIr+PFr0KmfnNATm9Dpm5L2AlehukfwnkkYUFUPkaQq35JE+9f0pIwD7k6P/vIYQYAkwGPvpvm+qAHQfwzuLv/l8DvRDieuB6gIaGv+3ihX9YuHtBKP47gDy4rQdsLIC9HoI3Rh6cDRCUZxXAXQ8yv5+dDSAz+Hdo+QO27A1Y2huLA4IEbKSzGdw9gOff3K3gdR/A20BaQPGY7g4QBv5/sgC3vXj8fbwbiQbYPnt7/WNg+Sx7wdl0AGeKHyqFIuf/GztIZ73/3AGkRDob9m8HpNO6f7tQ8Oy2/duF6rO0A5Z26wGvoYK01xZfDwCB56wDKYp3jj8g7suR9Py/F2rxTxzcv+AC0m47YP88nt0KiCCH0mn9i5xKu+2Ax5PHc9YXX/Pi/bkbih/sRXY2gNcX5NS1N4LXuT/HzibkATmVzhakt/cA3oqUuSCn0t2Ob1idIu8ofqjs413Fx28XuQNPHJBDr7v4IbIvpyn/MR+QU+kemFPbf85BTr2/zKkEnPUH5FDx37MHxUD/r6ll/pb4xHrdCCFiwJPAnVLKgf+++a/8yV99RaWU90spp0kpp1VW/l1XNP/9oY8FbQxggkggojeDPqXIMZTozcX/th7IxxQ5ghq7DRE6vchh1PgdiPB5gAGEUOJ3IiJXFNlESXwGEb1+P8c+i4jdXGQDEfsMInb7f+M7D+A7EbHPHMC3/ze+GSX2Wf/xYCCi1/s6aR9HrkCJ3QGEfA6fhxq/HUQYMBGh01Fjt4KI+GweixK9BUSsyLNQYjcHjD4FNXYLiIS/XRuLFrsRRAkQQmjDUWM3gpL0WW1Ajd0ESqnPSi1q7GYQ5f5jUqrQojch1Iri/uVo0ZsRSk1xeyla7CaEWl/kJHrsJoQ6NGA1eiNCG+WzKEGL3YSiTypyAi16K4o5s5izOFrsVpQgp1GM2G2ooVOCHOvxO1DD84Ic6/HPoEYuD3JsJD6LGr0uyKke/xxa7JaAtdjn0GJ3BDnS4p9Di+/PqRb7LFrsswfwHWixzx2w/21o8c8FOdSiN6EfwGr0muL9+TlVIhf5xyvmVAmfgRa7PcipEjoRJXYbiGgxp0egRA/IqTENojeCiPusjSueIwdBSHD/xtu/Wnwi3+iFEDr+IP+IlPKpv7LLTqD+AB4M7Pokjv2PDCE0ZOwOZOYhMKahaE0o0TvwuB+MSQi9GRm5FSkVhD4WoY9GRm/Ckw5Ca/Y/KCLX4nkZhNYE+gSEUorjdSPUOlRjCqh1OO5uUKpQjcNAHY7lbEWIUkzzcJATsOwNCBHBNI9CyjyW1QLohELHI6VLwVoOQCh0MgiFQmExYBEKzQURIh86CynThMPngIiTD52DJ3uJhi9AKOXkQ+chZQeRyCUItYZc+AKks5NI5ArQGsiGLsZzthCNXIOiDyMXuhTX2UA0cj2aPpps+HIcu4VY5GZ0bTiZ8NU41nKikZsxtSbykeuxrEXEYteha0PIRW+iUJhPPHo1ulpPLnIL+cLbxCOXY2iDyUXuIFt4hXjkQgytlnz0DjL5F4iG52FqdeSjnyede4pY6AxCWi2F6OcZyP6ZaOgkwtpgrOjn6c88QiR0LGGtHiv2efrSvyNsHkGF1ogd/Sy96d8QMmZQqQ3Fjt5Jj3cfpjGFKn04TuQOulwN0xhHtT4KN3ozXa6Lro+kRh+LG7mebieHpg+lSp+AF03S7fSjqnVUG5ORSg09dgeqWk2VPgPUofRZO1CUMiqNw0Ebw4C1ASHilIeOAplloNCCIkzKQseBdEgXVgAKZaGTAEGmsBhwSYbPQBEG+cJZSJkjET4bRcSxQvOQsg89cj5CKcMJn4/ndRKNXIJQq7AjF+K5u4hEr0Cog/HCl+K52whFr0NoTcjIFXjOBv+DUB+BjFyFtNehRm9G6M0QuRZpr0KJ3ojQhiKjN4C1DKJXIcTBUbznXxl7cMbfnSEhhAAeBNZJKX/yf9jtOeBWIcSf8Cdh+/+n+3kA6e7B670WyIG1ABcFMncVffECXITvn2UWCu8jkTiZB3x/W3gXiYeb/YPv6Asmnszj5J4q6hoDz8viFl4Frwvf5/ZhFT4s/ndcw/O68JxWPGcLoOC5u/2b01bk7Xgyi2uvAsB1NiBEGMdaBHg49jpQa7AL7wIetr0KRRuJlX8NcLCtJejGTApFf2sVPkIzTySXfQywyFkLCIXPJZP5PVAgV3ifaPRyMplfI2WeXOFdIrEbSaXuRpIjW3iXWOxO+lN3IWWOdOFdSuJfpDf1o4BLS75K18D3kTJHqvA+FSXfYG//d5Ayy0D+fSq9b7Gn/1tImaU/P58a7zvs6fsaUuboz8/HlWl29X0dKXP05efjyTw7+76BlDl68/ORuLT3ffMAhh1930HKHEp+PhKFXf3fw5M5lPz7IDR29f/nfkZl98BdeDKLkn8PiULHwD14MoPIvYOUHt3p3+LJFCJv4no2vdk/43p9CExcL08q/yKO14XAwPEGyBbew3H9eRdbdmNZq7CdbQgULHc3trsDy14PKOSd7UiZomCvBiDvbEJFIW8tASR5ex2mWkG+8D7gUbBXYmrN5PNvAC4FaxmmMY187gXAplD4iFDoeAq5JwALy/qASOhsrOwfgQJOYT5m5FKsopN3CgsIxa7HTe9z8gvQojfjpe9h3zyIHvsspO/2zwv7A2TF6wi16h9/Qv7DQ+D+Vfnwrx+fxEfxbOAyYLUQYkXxd/8ONABIKe8FXgJOBTYCWeCqT+C4//hwdx/g6HPgrDlAOOXAbmH/L/K+T97nm8nj2S3+hwKyuH1d0a9KoIBnry0696LPtVqLg7wHWMVBfju+r3VxnQ1Irztgz9mIJwvs87Wes6Xo6P3H4Llb8S1akZ0dxUdrFbe349it7POtnteJ46wNWHoD2HYL+3ytlFlsew1S7mMby1qNJFd8zh6WvbromP0o2CsPYIV8YTVS7nP4KnlrFTJw3go5axVI//kIFHLW8gNeY0HOWsmBJjBrr0Sg+HtIj6y1KmApbbLW6oA9aZG11rDPWHoyT8ZaFdyfJ3Nk7FXB8TyZI1tYjdzny8mTtVuKz18iZZ683YLrpXwmT85ei1PMqaRAzlpXHOT9nBasVhxnB/sK+Sx7PY63N8ip5Wwovmf818B2NuEd4OBtZwuK7AnYcbajFO8bwHV34tjRA3K6F9dZd0BO+3DttX+RU9fZn2OkhbRXH8Au0m6BIMcSnANZ+OfJQTDQ+5OxB+dA/3c7einlfCmlkFJOkFJOKt5eklLeWxzkkX7cIqUcJqUcL6X812hJqY8DbRgQLjr4G/zfHcBCn1LkCGr0JhRzNr7vDaPHb0EJneAzIfT4rWjhMwM24negRS4qsomRuAMjevV+jn0GI3Y9vm81MWO3Y8ZuDtiI344Zv3X/9vithOK3BxyK3UI4dmfA4dgNRAIOEY5eSzTwtyFCkUuIHcjhs4kn7kCIMIgwodDJxOK3I0QECGOac0jEb0eIKEKEMYxplMRvRYiYz/p4kvHbECKOEBEMbQSliZtRiqxrDZTGb0JRiqzWUn4Aq2ol5fFbUEUJQkTQlDIqEzehKUkUEUFVElTGb0JTK4ocpypxI7paE2yvStyIodUXOUZ1yQ2EtKE+izg1iZsI62NQRBhFxKiJ30LEmIwQYRQRpabkFuLmrOL2CNWJW0iEj0OIEEKEqS65nWRkbpFD1JTcQWn0Qp8JUZ38DGWxqxCEEJhUJD5DWfyGgMsTn6EsfjMCM+DSxG0Bl8bvIJm4M+Bk/DYS8c8GOU3EbiYe+0zA0dj1RIPtIcLRy4nE7whyaobPJZTYN+8SQg+djBm7NWAtdBRa9Bbf2YswijHDnzcRUSCM0MdD9Lqisw+D1gz6weHo/Tp68Tfd/tXi4JBr/6AQQkeJfRUv+xAY0xHaCET8S3jpBxDGZIQ+BjX+JZz0vQh9LIoxAU38G7a4G6E1o+hTUGNleFJFaE0oxnRUpRbHc1C0wajm4aAOx3GzoFahmkch9AnYbi9CKUUPHY8nZ2I5HaBE0cKnFb9FbkMIEz18JuCRszcBYETOBxQyVitICz1yMUKEyFirkTKDEb0KRUQR4SvxvB5CsetRlFKIXI3r7sWM3oqmVSGiN+A4OwjHP4Oh1aFEb8G2NxOJfwZDHwLR27HsDSQTt2How1GjnyNvraE0fjOGPgY99iUyheWUJa7D0EdixL9KKr+YssTVGNpwzPjXGch9QHnickx9GOH4d+jNvUNZ/EJMvYlo4rt0Z9+kPDYPU28kWvJ99qZfoSZ2BobWSCLxA3anX6Amdgqm3kiy5PvsTD1DdeR4TH0IyZLvsz31JJWRowjpTZSXfI+tA3+iInw4IW0YZSXfY3P/I5SHpxHSR1Be8h029v2O0tAkwsZoKkq+SV/fQyTMsUSM8ZQnvkZv3wPEzBFEzSl44st0u2VEjCYi5nSkUke3GyWk1RENHY6iDqfLVjG1aqKho9D1CXTaLppSSix8Ao45i047haokiEZOw5N5uq0ehDCIRc5CSoeeQjsChXjkfBDQW9iClC6x6KUoQqe30IaUWSKxq1BEBAqrkV4/keh1qGoSpXANntdJJHYLmlqBGr0W12knFLsDTatFRK7Ddbeixz+LqjWixm7CtTegx+5E0YdB9GakvRY1djOKPhoRuw1prUKN3YDQRiJjd4K1FKJX4k/RHRzhHaTf6A8N9B8T0t2L13dl0cG/g4eCk/pPv+yw8BYSz78wRhbr4fGwM78q6pkQSAcr8zuk7MOvuc5h5Z8o6hcDz0th5V/B8/YCGtLrpWB9gOfuADQ8uRfLWouzr27e3Ynj7sG21wAC292CI7NY1jIALKcNSZh8YQG+z21BUWvI5t8CPHLWcjR9DOncS4BD1lqEYR5Of+YpJA4DhQVEQ6fQm3kUicVAYQElkfPoSj2EpEBf/j2SsSvpSN2PJ/P05N6lOn4juwbuxpM5unPvUVNyJ9v6foonc+zNvU9D8gts6vsJnszRkXufYaVfoq3nR3gyx+7cAkaUfYW1PT/AlTnacx8wtvxrrO76Lq7M0579gHEVX2N55/dwZZ7t2Q+ZKL/Css7v48o827IfMdkrsLTzP33OLMLBZXHnj3Blni2ZxbhSsrTrx7gyz9bMYjwESzp/hiPzbM4swkNhWdcvcWQONbMIVyqs6b0fR2ZQMx/iAmt7f4ftZVAzC7E9j039j2J5KVRhYnk221LPUPD6UIVBwcuzO/M6ebcLRejk3DTd+Q/JOrtRUMl6vWSs1WTsbYBK2unAdnaQtvx5l7TTjpD9pAq+Uko5W9CFZCC/GJCk7FZCWikDufeReAxYq4hrQ+nPvYrEJWUtJW5OZSD7DBKHVGEhyfBxpDN/QmKRLbxPInIOmexvkbJArvAOJdEryRWdvFV4m2jsRgqpuw/gO3HTPwVyWNY7mPF/g9SP8eeu3kVWvFGshPrXjn3f6A/GODTQf1y4O9nvg3NIaxn7fXEOaa04oMY6h7SXQ+Cf83j2cqRMs8/Ru/YKpNeL72vzuNYqPK+jyC62tQrP3R6wY6/GcbYR+Fq7BdfrOYDX4co8ga+12/Aw2e9zNyC8Hvb5W9vZjIvLPl9ru9txrTiyyI7bQd5ehSz6WcfrJWutCNjzMmSsFXhFR+/JAmlrOV7RwUtcUoUVAYNkwDqQFfrzK4O/Fyj0FVbiFR29QKUnvxxPesH+3bkVyAMcfXduBQc6+u687+j9o3l05fazJx2686sDdmWBztx+R+/KfJEJuCu/38m7Mk9Xbg2etP1nJ/N059fgFOddXJmnJ9+C5Q0UuUBvYS15twvw8IqcddqLj86lv9BKwdlePIZLymrDdTsCTlttqKSRxRxnrfXoQiKLOc3ZG5FeDFnMad7egiZzARecbeiKEeTUdndhWSuDHLpeN5a9Iphn8bwUjrWMfc5dyjzuAYx08Ozl/IWj/wvGv17joBjohV9wcRDGwfmsPqnQx4JaX/SVUZTotQhteJEjqNFrEPq4wGeq0RtQjOkB69Eb0cyjAv8Zit+CHjop4HDiFozwOfs5fguhyCVAkaO3EIleBcL3q9HYrUSj17LPt8biNxOL33gA30giflPR/4ZIxK4nGb/VZxGiJHY1pQGHKYleSkX8Ft//ijAlkXlUJm4J/HNJ+BSqEjcHHA8dSU38xsBXx0LTGJS4IeCIMY66xDUoIuKzPpyGxNWoIooqIoS1ehpKrkQrsqlVMyRxOaoSQRVRTLWMoSVXoClhVBHBUEsYnrwUXUTQRARdidGcvBRdiaKJCJoSYUTJJehq3GcRZmTpxZhqsrh/mJHJiwlrlUWOMLr0YmL6IDQRRhcRRpdeRMJoRBNhNBFmTOkllJojDuBLqQiNRxNhVBFidOllVIeno4owqjAZXXYltdGjUEUIVZiMKr2S+tjJqCKEIkxGJq+mMX5OwM3Jq2iMX4BS5KElV9OQuAxFmCjCZEjJNQxOXBVsH5y4htrEdQhhoogQgxJXUZO4EYHP1fErqEzcjBB+Dstjl/k53ZfDyAX+vEkx59HwXBIBRwiFjiUcu8V/D4oIujkTM3ZTwKoxAS16ffCeF9oIiFztO3sRAXUI6KP/SSfoJx+eFH/T7V8tDn2j/5gQwkRJfBcv+zuEPgOhj0ZNfA8n82sUfQqKMQm95DvY6V+h6ONRjamQ+BZW+pco2ghUcxaGOhgv9TMUrQnVPAJTG4aXiqCo9WjmsYS18XhoKEo1ZvhkNGMWjnRRlDJCkTMxvOOxZRYhYoSj5yKlRcHrRwiDSOQSJC55pwuAWPRqBCo5Zw8Si0T8BgQmaXsbnsxQEr8dRYmQsrbiej0k459DU0uIWrdhux2UJ+7E0CqIR++g4O6ksuQOQlo1idjnyDlbqC65lbBeR2ns82TsjQxOXk9UH0J54ssMFNZSn7yGuDGM6pKv0ltYyZCSK4gZzdQmv0Z3bhlDkxcSN0cyuPSb7M1+xPDkecTN4TQlv0V79gOaS84kbjQxrPQ77Mi8x/CS04gbTYws/w6bU+8wPHECCWMIY8q/zYaBNxgWP4aEOYRxFd+ite91hsZnU2I0MaHym7T0vkxTbCZJs4mJFd9kRe/zNEanUWoOY1LF11ne8yyDo5MoM0cwueJrLOl+ktrIOMpDo5lQ/hWWdD9OVXgkFaHxTCz/Eh92/ZkKs4mq8GQMdRCLOv9I0qynKjyNkNpI2qsirtdSE5lNTB/DgJskqlcyKHY0ydAU+p0QplrKoOiJlIeOoNdV0ZUYtbEzcKVFr22jKCaD4ucipUu3nUEgGJS4BIGgx+5F4lITvxZFaPRaHbgyR3XiFlQRot/ageP1U5m4E12NE7M24ridVJR8DkMtJRW7DcdtJ5n4HIZWTTh2J46zhZLEZ9C1eozoZ3CcNiLxO9G0JozY53DtFkLxW/z3cuwLePYK9OgNCH0UMvZFsBdD5EqEMP65J+onFBKBJdV/9sP4h8Shgf5jQrpdeL2Xgcwi86/7RWyp74JM4xVeReJhp/8LZAo3/wpSOuTTdyNlP4gQUtrksg8WdY3pT6Tm/oTndeL3thkgm3/J72GDjiu7yRU+wHG2ACqOu4ecvRbLbgVUv97a3U2+WBJYcDZje3lyhcUA5Ow2EBHS+fcASdZag1Dq6M+9hsQjVViBoY+lO/MCEpe+/BIi5uHszTxZ1BwfUho+mfb0o3jSYm/uA6qi57Jt4Hd40mJPdgF1icvZ2PcArizQnp3P0JLrWNf7K1xZYEd2PiNKb2NF9y99R55eyKSKO1jU+QtcmWdT+gOmV36WD/b+FEfm2ZBeyMzKz/NOh+/MWwcWcXTNZ3l9989wZIGWgcUcN+izvLLL5zUDizmp9k5eKvLqgSWc4t3B8+2/xJYFVvYv5TTpHcDLsCU8134vtiywom85jhS8sOsBLC/Psr7luFLw0u6HsLw8et9ybCl4s+MPFLwset9SbA/e7XycnJtBF4speB6Le54h66bQhUHedVjZ/yoZpw9V6GScPBvT75Gyu1CFRtrJsiO7mAFrD0KoDDj99Fpr6SlsQxEqfXYXOaed7vx6QNBj7QY5QGduNQjoLuzAVCR7c36Ouwsbiakl7M2+h8SjO7+WUqOBvZnXkDh05VdQHZ7A3szTSGnTW/iIysgxdKUfQUqbvvx8aqJn0Zt+ACkLpPJvURG7kv703UiZJ5N/g/L4rWRTPwHyFApvkIh/Hjv9Q5A53MLrhONfhdQPgJw/V1XxBkIt/9TPz086/AumDk7JcWig/7hwt3Ogo/esDwmunZM5pPVRsW5eFrcvCmqskTkc6yOklyr+TQ7bWoTndbGvZtq2luC67exz8oXCUhxnU5EdLHsZlr0d38k7FKwVWF4v+xx8wVqNLa39ftZuwcM8wN+2IkXXAbwBy7MDf5t3tuASKdbiQ8HZRX9heeDQbbebvgPZS9GTX1acF9jntPezJx06c8sDBo892WUHsGB3dgVO8XgChd25Vbj7HL1Q2JldFTh6gcKOzEr2zYsIBNszq/5iumxbZg1CCJD+6kBbM6sRxWsfXOmwNbMGpci2tNiWaUEU78GWBbZm9vfes2WBbZkWvOK8i7+9BduzAIktC2zPrqPg5fZzbi1Zp9+fmJcF2nPrSNldRbZoz66jz9pVfE+47Mm1ki06ele67M234bh78YpOvivvO3oPGyT0FNYTUl2fgb7CBlwtjFfMacreiCr78Yo5zdibSSlO4ODzzg4yhaUB2+5ecoXFwbUNrtdPzvooYOllsa0PCZw9Fq71UbG2388p9iL+0tHvhINgoIeDdzL24Pz4+qRCHwtKTeAj1ehVCLUxYC16NYo+8gAnfy2qMSFgM3o9ujGz2EckRCR+A0bo2P0cu4FQeG6xLj1EPHYDkch5CBFBFDkRvRghwkXHfj0l0csDTsauoTR2VZHDlMauojx+deBny2KXURW/BiFCKCJMeexCBiX2c0V0HnWJq4s+OExl5BTqAz8cpjx8NENKrkQRIVQRoSw0naEllxd9dISkMZbmkksDThjDGZm8EE2E0ESEuF7PmNILir47QlSrYmxyHnrRj4e1UsaVno2uhNGVCCElzqTSs9EVE0OJYKgRppadjVZkXQkxrexMdCVUZIPp5XMxlDCGEkYXJoeVnU5IifqsmBxWfhoRLYGphDGVEDPLTyWul2EqYQwlxMyKUyk1qjGUEIZiMqvidCpDgzGUELowmV0xl9rw0IBnVZxBfWQ0uhJCEyYzy89iaGwKugihCYPDys9hRPzwgKeXn8PoxHHF18RkStk8RpecglZ0+hNLz2VUyZkBjy09jxEl5+53/snzaE5cWOQQw0rOoylxSTEnIRri59JQcgWKMFFFmLrYOdQmrg1yWBE9g6r4dcWcRygJn0BZ4obieyRCJDSbktiNxfdQFMOYSjh6AxRZ00ajR68pOvsoitoEkSuCeSvU2oPG0UspcKXyN93+1eLQN/qPCSFMlORP8DK/QxgzUIyJ6Mm7cNIPohqTUIypGCU/xkrfi6qPRzVnElZ/TD59N6o+Ej10JIo+lEzqZ6jaUHTzWBRtHF7qx6haPWb4FDRjBv0igapUE46chRE6Fo8wqlJGNHIBoVAGR6ooSox47DKktLE9B0WYJGPXIJFYrv/tqjx+M/5l9Bk8WaAycSeKMMi4vbhehprEHWhqhLTTie32Mjh5O7oaZ8DZQ8HpYEjpLRhqKb1WO3l3F8OTNxDWKhicuJO0vY1RpdcS1WsYkvwM/YXNjCm7koRey/DSz9Odb2N82SUkjQZGl32BvbkWJpadT0WoiQnl/8au7Comlp1NRXg4Uyq+yLbMCiaXnk5laDizKv+NjemlTC49iYpQE3Nqvkhb/0dMKj2WilAjx9Z8idV9C5lcOofKUCMn1HyZ5X3zmZg8nKpQI6fWfpHFPe8xvmQ61eEhnF73RRZ2vc2YxBQGhZs4s/YLvNf1JqPi46mNDOOsus/z9t7XaY6Poj7SzNl1n+WNjlcZGmumMTqKM+o+y+t7XqQxMozG6FjOqLuTV/Y8R224kWGxCZTodby65xmqQ7UMj0+lwhzGq3uepNysZkRiJoPCo7Hl4ySMckaWHElDdCp5mSSqlTA6eTwF9wgybhRTjTK65HRszyLl6miKwZjkuX7ZpOshUBhd6jv6fsfCw2FU8hoUodLvZHC8LCOS16OpIVJ2D5bXz7DSm9HVKAN2BwW3k4bkbZhqCRl7BwVnF4OTt2OoFSTiX8BytlKVuB1DqyWR+CKWvZ7S+G3oWiPh+Jdx7BaisVtRtSb0+FdwrZXosetR9BF48a8ircWI6BUHjaMHilchH3xxaKD/mJBeN17PxUVH/xIuYA18u+joX0AiyQ38AGQKO/88nnTIZn6O9PogZyClQzp9v69rhIH08qRyj+K6uxEYuO4AqdxLOO4OBBqO10Om8AGWswkhVGy3g4y1joLdAihY7k7yzh6yheWAIOdswZIFUvkPAcg4G3CI0pt9D/Dot1rRtEF0Zl9HSo/ewirC+hh2Z55HSo+u/DISocPZmnoaKR325JZSGTmRDf2P4UmbHZlFNMTPoqX3YTxpsS3zEc3Ji1je/VtcabEp8yHjSq/kw84HcaRFW+ojpldexzsd9+NIi7Wpjziy6mZe3X0/tiywamARJ9TcwnPtPi/vX8zc2lt4fMd92LLA0r4lzBt8C49suxdbWnzUu5SLG27hoa33YXkWC3uWccWQG3hwywNYnsWC7hVcNeR67t/8IJZn8V7XSq5t8rhv828peBbvdK3ieim5b/PDFLwC73SuwpUKv978R/IH8G+3/pm8m8foXIUjFR7d/iRZN4ehrMTy4Oldz5NxMmjKCgquxyt7XiNlp9EUjYzj8X732/RZfWiKxoBtsbJ/IT2FblSh0m/n2ZheQWfBr6PvsVLsya9nT34HAkFnoZeUs4v23EYEgj35TqCPHZkWELCn0E5IkWzPLEFK2J3fSlKLsT0zHyklu/PrqTHr2JF+DU+6dOTWUBsZy/bU00jp0pFbSmN0NrtSjyClQ1d+AYNjc+lI/RpPWvTk32Fw7FJ6Uj9FSotU7jWqE7eRTv2nX2efe4XSxJewBr4LFLDzrxAt+QYy9W2/xXHhVUTlWwil7J91mn5i4U/GHpxD4sH5rD6pcLYVf/Dr4L3CfHx/LosTU/PxfbnnO/nCfKSXwXfwOezCe3her88yh2XNx3X34Pc5yVEoLMRxt+Gva+OQKyzEctrw+6jY5KyPKNg79tdQFxaTd/sC554tLKOAE3DGWoklI4GDT1trEO6ewMGnrVbybm4/2xuxCAUOPuPsgNzSwKnnnE72ZJcEXHD72ZVdghM4+xw7M8sCdqXN9szywMF70mNLZhl2cG0BbE6vDFgg2JBehVPsDyRQaEutQrLf0a8dWI2U+x19S/+awLEjYU3/GpSgV43H6v4WlH118p7D6v61KMLfbnkWq/rX+U4fKHgWq/takdKv1C94Fqv61uFI1+9U41ms6V9HwSvgIbE8i5aBVrJOFg8Py7NYm1pHv90fcFuqla5Cp9/bXLqsT61jb2Gn/3hw2ZRpZcDaiVes1d+abcVyu3GL/X12ZNvQxABu0dHvyq0noji4xdeoI78BS9ODeY2ewgY02ekvagP0WxsxRT7IccbeRl9eD3JccPaQyi8Mrm1w3B6yhfmBo/e8NIXC+wf0JyoU3+f72EEW5h/g7KV/nhgHw0B/8E7GHpzP6pMKfQwoFUUnH0aNXIpQBgWsRa9AUYcEfUDM2FWo+qhgeyh6DboxBVHcHo5cg2keEfSGiceuIRI6IeCS2DXEwmf4jl6ESUavIhGZF3Bp7ApKo+ejFLk8dgmV0QuKdexhKqMXMCh2UcDVsXnUxS4OuCZ2Bg2JiwLnXhM9haGB/w1TEzmK5pLzUYuOvSo8nVEl56MKE01EqAiNY0zyPFRhooswZcZQJpSejSZMdCVM0qhjcumZaMLEUMLE9Uqmlp2GXuSolmR62ckYSghTCRNSo8wsOxFDMQKHPrviBDShEyo69iMrj0NTfNaEztFVx6EJzWdF47jqY9AVg7AaQld0jq86FlM193P10UTUMGElhKmYnFB9FHEtRlgNYSoGJ9YcRZmRJKT4fNKgo6kyKwgpIQzF4MSaY6gL1xJSTAzF4KTq42iKDgn4hKrjGBkbiVnk46tPYFzJpICPqTqRycmZRcdvMKfiRCaXHoGhmOjCYFb5SUwqPRpdMdGFyfSyk5iYPBFd+DwpeTLjk6cVHX+IsSUnMbrkrCKHGZ44ieFBzsI0xE5iSMlFwbxJTeRY6uKXFZ19hNLQbKriVxY5SsycSmnsmsDRm8Y4YkUnL0QMVRuGEb3iAEc/GCVyKX5/pygolQeNowdwpfibbv9qcegb/ceEECFE8hfIzO8RxmEo5jT00ntwMg+g6FPQzJmES++hkL4XRR+PZs4hpg0hl7obTR+JETqOEn00qdTP0LRhhCOnYpjT6Ev9BE2tJxI5C9M8kp7UT1DVauLRC4iET4X+chS1jJLY5cS8HJ6IoyoxyuLX4Xk2DiYKBlUlt+B5Ers4OTQocSdCUbCkgycthiRvR1F0cl4e18swvPRWVMUk42awvD5GJW8q+tx+8m4n48uuxVRL6LN7SDu7mVR2NRGtlB77VvrtHUwtv4yYVsGEslvpLmxlesWFJPVqplXcxt78Rg4rn0d5qI7ZlbezM9fG4eVnUh0ezDHVd7Al28Lh5acyONLISTW3sz69miMqTqA+2sQZtbfTMrCSIyqOpj4ylPMG386K/uXMLp9NfWQIlzbcxuKepRxecRgNkUauGnIbC7oWM7NiKg2RRq4feivv7P2IGWUTGBJr4OZht/DanoVMKxvL0NgQbht2Cy/uXsDk0lE0x5u4o/kmnmt/n/ElzYxMDOP25ht5eue7jE4MZUxiBLcOv4knd75Fc6yB8ckxlBtVPLHzDRojdUxMjqM2PJjHt79KbaSaaWWTaYoN5fEdL1NlVjKjbAaj4mN4fOfzlBqlzCw/gvElU1B2PkdMj3F4xfEU3Dl4MklIjTC74lQcz8GRUXTFYE7lObjSJe+ZgGB25QUIBBlXwZMuMysuRlNUMq6D7eWZUXEFumKSdrIU3AEml1+DrkbIOH3knW7Glt2AqSbIOF3k3d0MS96EqZaTd/aQc7ZQX3IrhlpNWeLLFJwNVMZvRdcGE0t8FcdqIR6/BV1vwk18HddagRm7AUUfjiz5JhSWFB196J96nn5ScTBfGXtooP+YkF4vTvdFfq+b3PNIISj0f93vdZN71i+qHPie3wo4/wwA6fSPfUef1/CkS3/mXly3CyE0PFmgP/NHHHc3Qmi4XoaB3EvYzjYQKq7bT19+IXl7AwgF2+kiZbeRsfzeNnl3Dxl7LwP5pSAEGWcnlrTozX8AQMreikuUvbl3QUr6rI2oSh3tmdeQ0qOzsI6IPpotqZeQeOzOtVBuzqC1/xk8XLZnVjA4fhwrex7Hky5bMstpjs9lYfcf8aRLW2opE0vP5+2OR3Clw+qBZRxRcTEv734YVzos71vK8TVX8lT7wziezeLeZZxVew1/2P47HM/hg67lXNRwDQ9s+T2O5/B+50qubrqaezb529/pXMlNw67mrvW/x/Yc3uhYxZ3NV/HD1t9hey6v7VnN50dezvfW/QHbc3l592q+NOpy/qPlj1iezYvta/jK2Iv5dstjWK7NC+0tfG2swn+0/BnLdXixvQVPKny/5Snyrs3zSgtSqvxX6zNkHQtdacH1FO7e8BIZJ48mWnA8lQe3vErKzqKJNRQ8wZ+3v0WflUETKjlH8uLuD+gq9KMKlbTtML97KXvyvqPvs2zW9K+hPdeBIhS6rTzbs5vYltmBEAp7CykGnN1sTm9CINid68WVA2xIrQUE7blOIqpHW2oZEsmOXDtVZpjWgQWAx47cZgaHB9HW78/D7My1MTQ6kvX9zyBx2ZVbybD4LDb3P4InXXZnFzE8fgo7Bu7znX12PkNLLqKj/yd40qYv+waDS26lb+A7SGmTzr9CZcm/kx34JkibQv4lSkr+AznwTcBCFl5BVL6NUJKf9un5DwnvX7Ci5m+JQwP9x4S/nqrf6ghyuPm32VfTDg5u4e1iDxEHpIOdf7NYN2+DtLEKb+O63YCNlDb5wjs4bjvgIKVFrvAelrPRP4aETP49cvb6gNOFD8g47YGjT+U/JO0Ua6Yl9BcWY0k38LH9hWXYRAIf21dYiRS7Asfel19LyskG3FtYT8FVAsfeb2+HzH4Hn7I72JJZEjj3rNvPxtTSwLEX3CzrU/sdvC0t1g0sx/L2OXqX1f3Lsbx9/eYlq/pWByyAFX2rcTwbD4mCYGlvC6508fBQECzuWVN0p349xKKetQgEHh6g8lHPWoQQeEg8JAu7WlHw2fHcgF08PM9jYWdbMaMeruexoKsVV8qAF3a1YnkOjvRwpMcHXa1knUKRLT7qaqXfzuJIF0e6LOpuo7PQhys9HOmypLeN9pzv6B3psry3lV35dv9KAAmr+9rosdtxpQcS1g60Ycsu7KKDX59uRSET8OZ0G1HNxi46+e3Z9eQdJcjJ7vx68PYE3JnfQFgM7M+5tYXOrAg467TTm58fOHrL7WQg9w5ecd1b1+snl39zf129zGHl3wqcvMQpLi5/QF29swWMyR9/Mv0LhP+++McP9EKIMuAxYAiwFThfStn7V/Y7GfgZoAIPSCl/UPz9N4HrgM7irv8upXzp4455cH58fUIhtNEgEkHvbS1yIUKp8FmE0SMXo6i1+x199DJUbWjg6MORyzH0cYGDj0YuJWRMDzgRvYxI6KiAk7FLSIRP8lsJizBlsQspjZxa7B0TpiJ6PlXRuUEvmero2dREz0AVkaJzP4O62JnFPixhaqOn0hjfz3Wx4xmWOCPwuYOjRzKiZG7ge+siMxhTMtd37iLMoPA4JiZPDbjKHMbU0pMD515u1jG9/MSAk3olsyqORxcGphIirpVwRMUxGIpBSAkR0aIcWTkHs8imGuLYqjm+Y1d8p35C9Ww0oRFWQ2iKxkk1s1GFQkQNoSoqpwyatZ+FymmDZqIJlYhqogmVuXWHYSgaUdXEUDXm1s0gpBpEVBNTNZg7eDpxPURENQkpOmcOnkHSiB7Ah1FplgR89uDDGBypOGD7TIZGawirJqaic0bdTEYnGgM+vfZwJiVHEFJMTMXglEGHM61sfMDHV89mRtmUgI+ums300hmYiompmMwun8O00tkYiomhmMwon8OU0qOLHGJi8gjGJ09AFyF0EWJ0Yg5jkqeiiRC6CDM0dgTNJWcGOa6LzKIxcU7g7MtDU6kNeu1EiBvjKI9dGvTfD+nNJGJXFJ19DE2tJxy9tOjoYyhKFUrkAvw1F6L+er/6qH/qefpJhURgS/Vvuv2d8SXgTSllM/Bmkf8ihBAq8EvgFGAMcJEQ4sDG/3cduP7H/+2An9Sasb8BTgf2SinH/ZXtRwPPAluKv3pKSvntT+LY/8gQSgS99De42YdQjMNQzVmYpQ/5vW6MqWihI4lqD5FL/QrNmIARPo6EPpJM6hdo+ihCkVPQjMn0p+5C14YTjZxNKHQEPf13oWkNRSd/Env7f4yuVpOMXUk8Mo9d/T/xF9mIX0+Zl0MolWgiRm3JLbieDUoJCgYNyVvxuyJGABhWeisgcKWOJy1Gl96MouhYUmB7GSaW3YCmhCh4Dnm3j6nl16IrEbJenqzTzfTyKwmpcVJOhgF7D4dXXkpYLaHPSdNT2MmcygtJGGX02P105LdzTNU5lJqVnDDoWnZkt3Bc1VwqQ9WcWXcdm9IbOKH6ZAaFazl/8HW0pto4sfp4GqJ1XNZ4Lav713FSzVEMi9Vz3dBrWdrTwok1s2mON3Lb8GtY2L2Gk2pmMCLRyBdGXsu7e1dyfM0URiYa+cqYa3h99wqOq5nIqJIGvjnuKl5uX8ZR1WMZU9LAd8dfzTM7l3Bk1SjGJRv5/sSreWLbImZVNDOxtIn/nHgVj239kGnlQ5lSNpQfTbySh7csZFJpAzMqmvnhpCv5/ab5jC0ZzKzKUTREqnlo03s0x2s4smocI+P1PLTxHRpjVRxTPYkJyWH8ZtNb1IXLObFmGjPKxvDbLa9RaSY5ddBsjqycyu+2vEJSj3F67dHk3cP5g3iRiBbmjNqTsT0bTSTRFZ25tacVrwyOIhDMHXQWfmdMA0+6nDroPFRFpeAp2LLAcVUXoSs6Odej4KWYXXkZphIm6xbIOd1MLb8GU42RczJknd2MLbseU02Sc/vI2VtpSt6EqVZScLvI220MKrkVU6ulJPFNLHs1ycStGFoj0cR3sK1lhGM3oOjDkInvgL0EEfE/FA6GkJJP62KoM4Gjiz//DngH+OJ/22cGsFFKuRmguAzrmcBa/n/EJ6VufgvcDfz+Y/Z5X0p5+id0vE8lpNeH3XM+yDxe7jmk0Cj0f7Xo6J9BopEe+BbSS1HIP4WUCv2p/8LzehBCRUpBX/oeXHcvCBVPuvRkHsFx2kEoeLJAd/YlCvYWEAqOzNKd+5Cc1QpCYHl99BXWkyr2tsm73aScvfTkFwOCjLOHvOewN7cAgAG7HY8IOzPvANBjbUNV69g88BoSyd78ZhLGSNb2v4hEsiu3nsrwNJb3PIvEY0tmHU2xo1nQ+SQSj7ZUC+OTp/BGx2N4eKwZWMOsirN5tv1xPOmxrG81J9Wcx6M7HsOTHot6VjGv7mIe2PonpPT4oHs1lzVext0b/4QnJe/sXc1Nwy/jR60+v75nDZ8feSnfXvMnPOnx8q4WvjLmEr66yucX21v4zviL+bflf8LF49mda/nBxIv4/NI/40iPZ7av40dTLuCzix/HkR5PbWvlJ9PO5TOLn8bxXJ7aso67pit8fvGzWJ7Dk1ta+TEqX17yPHnX5snNrSBVvrHsFbKOxROiFUXqfG/Vq6TsAqpYh5Qqd619mz4rjyrW4UqVB9fPp7uQQRECyxE8vn0Re3L9KEKQtT1e61jJzmwPihCkbJdF3a1sTncghKDHstiQ2sr61E6/jj6fo9vaw9qBzYBgVzaFQ5pVfesA2JHrI6Y5rOj31xzYnttLlRlmed9CpJRszbQzJFLF8t43kEi2ZLYwKj6clb3PAh7bsq2MTUxjbe8fkHi0Z5czNnkiG/t+hcSjI/chI0ouYHvfj/xrK3LvMqzkZjr7vwXSYyD3OrXJr5Lp/yp+m45XKCv5PnLg64CLzO9z9IlP+ez8R4T4/3LBVIUQ4sCV8u6XUt7/N/5t9b41s6WUu4UQf20dxjpgxwG8E3+97X1xqxDicmAJ8Lm/pn4OjE9koJdSvieEGPJJ3Nf/pJBB35niepz514s/7+NXkDILRWdu5V/Bk71AASkhV3gFx+3w95eQy7/qT7zi+A4+9zp5u5V9Tr4/+yYZe7+z78+9y4C9J3D0Pfn5pJ2BwMF35xeS8wj8a1d+MbaMBNyZW44n2gPnvje3hj67P+COfCtpV2Lv27+wBUdGA+619rAutQSr6H8HnB5W9y0JHHzWybCib1ng3AtegSW9+5286jl81L2Cguc/fg2NhV2rA9bRWNDVgu05eEh0NN7vXIsnPWzpoqPydsdaJBLbc9FUlbc7/AHQ9lxUReGtPa0IIbBdF6HAm7vbEIDluahC8MauNiiywOXNXW140sPy/H5Db+5aj+25Ab/W3krOsQN+Y3crA3YBy/Pr3N/c1UZXIV3cDm/tbqU924tT7M/z7t71bE53Bj303+9oY0u2Peio/0Hnejqt3b6jBxZ1t1GQ3cFrsryvFUVkKRRfwzX9rZQYheA1XZ9qo9dSgxxsybTheO3BPEl7bj0h0RPkuLOwifZMIeABezt7s+/gFp17ztlDT/bNwNnbXg/p/Cv76+plCiv/Mgf2q/fyr7Lf0RvgbDp4HP3f/o2+S0o57f+0UQjxBlDzVzZ95W+8/7/2ibPvbfQr4DtF/g7wY+Dqj7uzT9PRzxJCrBRCvCyEGPt/2kkIcb0QYokQYklnZ+f/abdPJYS2ryY+CoTQwuciRDJw8lrkAhSlqrhPiFD0IjS1PnDukfCFGPqIAxz9BYSMCfvr5qMXEDVnHuDkz6UkdNQBTv5syiPHoha5OjqXqujxRScfpiZ6KrXREw5w8idQHzsRtdhLfXD0aIYmTggcfH1sNiMSJwY+tyE6gzElxwUOvj4ynonJ44rOPURteDhTk0ejCwNDCVFt1jOz/Gh0xXfw5WYlsyuOLNbBmyT0Eo6snF108iYxLcKx1bMwFZ2QYhJWTY6vnoGp6IRVE0PROKlmGoai+45dUTm1diqaohJRDRShMHfwlKKTN1CEYO7gyShCIaL5fHb9JFQEUc1AFQpnNU5EEypRzcBQNM5unICh+hxSdc5snEBYM4qscXbjRBJ6KOB5TRMpD8WIFPefN2QytZEEEdUgrOrMa5xEU6yCiOpvP6dxMqNKBgV8Vv1kJpc2Ei7y6YMnc1h5s8+Kzim1k5hVPrrIBsfXTGZm+QRCis9HVU5lZvlkzOJrOqt86l84/CmlU5kSOPwQY0umMiF5VJCz5vhURpecEOS4PjKJoYnTAmdfERrL4NhZgbOPG81Uxc4L1hQIa42URC4K6uo1dRDhyIXsq5tXlFKUyLkEjl5EQRvxTz1PP8lwUf6m2/8tpJTHSynH/ZXbs0CHEGIQQPHfvX/lLnYC9QfwYGBX8b47pJSulNIDfo2veT42Pq2qm2VAo5QyLYQ4FXgGaP5rOxb/+3M/wLRp0+Rf2+fTCqFE0ct+h5v9LYo+EzU0B1N9GDvzaxR9KnroWBLqMLKZe9D0iZjhkynVx5FO/QJdH0M0ehaGOZO+1E/RteEkYhcSDp9AV/+P0bUGkrHLiEXOYE//XehqNZXx6yiNXsSO/rvQlTJqS26hRubZ1PszVCVKY8nNSBw0pRJVGDQnb0bioSglAIwtvRFQECKCJ20mld+AQEVKA1tmmVZ+NboSwpWCrNvP4ZVXYCgRLE+Stns4svpiQkqMnGfTa3VwbNX5xPQSMq7F3nw7J9acQ4lRyoCToz27g1Nr51JmlHGufRlb0ls5vfYkqkNVXNZwGW2pTZxRewJ1kSquH3oZq/s2ctbgI2mMDuLO5ktZ2ruBs+pm0Zyo40ujL+GDrlbOrJvB2NJ6vjnuEt7Zs44z6qcwsbSBH0y8lNd2tXD64AlMLmvkp1Mu4YWdqzl58FgmlTfwy8Mu4emtqzmxbhRTyxv59ayLeWzTCo6ta2Z65RAePPwSHtmwjDk1TcyqauLB2Zfw8PqlzKxq4IiaofxmzsU81LqYqRWDOXpQM03Rcn697iMmlNdyfO1IRidquHftB4xKVnNq/Vimljdwz9r5DE9UcGbjRGZXDeeede9SHy1jXuNUjhs0hnta36EmXMJFQ2Yxt24K96x/izIjwuVNR5FzCty38Q1iWpgrm47Gli4PbS7FUAyuaDoBT3qElARCCC5tOBWEQBExPOly7uAzUYWClCaWV2Bu7Tw0oeF4Kjk3zYk1F2IoISxPknF6OKLqckwlguXZpO09TC6/irCWpODlyNjbGJG8nrBege0NkLXXU5+4mZBeg+P1ULBXUx6/FUOvJ+Z9F9teSjh6I4o+FBLfRdqLfUevRP+Zp+knFpJPbVGR54ArgB8U/332r+yzGGgWQjQB7cCFwMXgfzjsUz/A2cCav/L3fxGfykAvpRw44OeXhBD3CCEqpJRdn8bx//+G9Aawuy/0HT3PgBIi2/clpMxA9mkQEVIDX8eT/ZB7EjDpTf1nsW5eINHoTv8Kx9kNQiBR6Mw8guX47Y89JJ2Zl8g7G/EnUS06c4tIWS0AWF6O3kIbfYXlPrv9DDhddOY+AiDrdpN1Xdoz8wFI2XtxibI59RYAPdYuNLWWtf2vAtCR306JOZJlPS8AkvbcFgaFp/F+1zMgYVNmIyMTc3it40mkhNbUeqaVnshT7U8BkpX9bRxXPZeHtz2JBBb3ruOs2rO5d9PTgGR+VytXDjmPn7Q9BcBbHa3c1nwB32t5Cgm8tmcdXxx1AV9b+TQAL+5cx3cmXMAXlj4NUvL89jZ+NPV8bvvwKZCSZ7a18ovDzueG959EInlqcyv3HH4uN773FJ6UPLmhjfuOmseNbz+NKyVPrW/lvqPP4ea3n8XxPJ5ua+OeY8/i9refx3JdnlzXinGswWfffYmC4/Dk2lZMYfCl+a+RsS2epJWQMPjGh2+Ssgo8QSsGOj9c+h49+SyIVnQ0frlmIXuzaT+nrsIfNi5jZ7oPEDiu4Pkda9g80IMAcpZkftcG1vV1IIABy2PdwHZW9fptEbrzBfZaXSzp8evoO3I5bFJ82OUrqvZsiqjusbBrORLYlu1lUCjE/K4PAcmWzF6a4xUs6HoDgK3ZnYxLDOXDrmcBybbsJiaWTGFJ9x+K3MKU5HGs7rnPfw9klzGh9Dw29v4XIOnMLWBU8iZ29X8LgP78WzSUfIWB/n8HIJ97lfLkD5EDvoGQ+X29buKfxCn3Tw0J2J9Or5sfAH8WQlwDbAfOAxBC1OKXUZ4qpXSEELcCr+KXV/5GStlS/PsfCiEmFR/yVuCG/9sBP5VnJYSoATqklFIIMQNfGXV/Gsf+e0I6G/Br5otrqGZf8N3lPp+Zfw5PDgSczz1bXFQkj5SQzT+H7exkn6NP516gYG+EYp+T/uxLZO017FNvPdlX6bc2B9ydfYO+Axz93tw7pJxM4Fc7sgtIuxTXMIXd2Q8pyGjgY9uzS/BEVcA7cyvZa/UGDn5Hbi29tovt7fO7m7GK3xQBOvLtLOtdHHCP1c1H3UsCfzzgDLCge1nAwsnxbufywDcrQuGtjpXki6wKhTc71uxnReGN3WuxXN/RRxWVV9rX4koP23OJKgYvbvcdfd51iGg6L21v9V9r1yGkary4dT8bivoXrArBy1va8KT/9wJ4aUsbjueRc33n/uKWNgquQ77Iz29uJW1Z5ByfX9jcSk8+G+z//JZW9mRSFIqO/uVtbWwZ6Akc/Svb21jXtxevmMPXdrbRltkVyNU3drWxu7A3cPTvdqwn4/UGr8n8zlZUNU2++Jou6mmjxLACXtnXyp6QQqGYk7UDrRS8cJCjTelWdPYGOW7PbSCuZoL3QE9hKzszbwXvoYy9i73ZV/6irr4v91zg6B1PkM8/f0AdvYKXfxHBvjUGNHA2HhSOHsSn0o9eStkNHPdXfr8LOPUAfgn4f5VOSikv+/96zE/E0QshHgUWAiOFEDuFENcIIW4UQtxY3OVcYI0QYiXwc+BCua9T1f/gENoIECbg94vXImchRKzIYfTwOShKmc8iTCh8LqoyKOhNEw2di6E1BRwPn0NIH31AL5sziRpTAidfHj2dZGhmwJXRU6kIzw4cfE3kRKojRwQ8KHIMddE5wfqmddE5NMaODPqi1EdnMTw+p9gbPURjdBqjE3OCGuzG6ETGJ2cX/a5JQ2QEk5P7a7hrw43MKJuFoRgYikmVWc3sisMCf1yql3J0pe/cTcUgrsc4vnpq0cn7tesn1kzxnbxiYKo6Jw+aSEjRCas6mlA5pW48hqoRLjr40wePRxMKYVVHIDizcRwKgsg+HjIWAUQ0HUUIzmoagxCCiKajKgpnDh2DUmRDVTlz2Gg0RSGi6YQ0jTOGjcZUNSKaTljTOHPYaCK6HvDZw8eSNEP7edgYqiKxgM8ZNpb6eNJnVePMoWMZkawoss6ZTWOYUD6IiOrz6Y1jmFHRGPCpg8cwq3IY4aLzP37QaGZVjiiywTHV45hVPiZw9rMrxnJY2X6HP610HNNLpwbOfkLJOCYlDwtyNiI+jrElc4q9ckI0REbTHD8meE9UmMNpiJ0U9DeKG43UROcG/etNdRClkXnFuvoImlJOODKvuK5xBCESqOEz8dcpDvvrGWt/1cL+y4XEvzL2b7n9q8UnVXVz0f9l+9345Zf/UiGUOHrZI7iZ36GYh6GGjiVS8Wes9H2o+jSM8EmU6KPIpn1HH46egW5OpT/1cwx9DLHYeYRCR9GdugtdayYZv5RY+FT2DPwEQ2ugMn4tpZHz2dF3F4ZWTU38eqriV7K596cYShkNJTdQT571vXejKVGGl9yEh8XanntRFJ0xyRvw8DDUSgAmll2LgoKuJHGlxYyKa1DQUJUolptldtUVaBiASdbt55iqS9BFCClVBuxeTqg5j4gWw5HQVejg1EHnENcTFDyP3fndnFF7OkkjSdZx2JbdyTmDT6HCLCXtWKxP7eD8+mOpCVdwa/P5rOnbygUNR1MfreDfRp3Psp7NnN94OMPi1Xxj/Hks7NzIBY0zGJUcxPcnn8u7uzdwftMUxpfVcdf083ijvY15QyYypXIw9xx+Hi9tW8dZQ8dxWHUDDxx5Ps9sbmFu02hm1jTy22PO58kNazhpSDOHD2rk4ePP50+tqziucRiza4fw6EkX8PuWFRxdP4SjBjfx6Mnn89s1yzm8roFjG4bxp5Mv5IFVS5hRM5gThwxnZLKc+1cuZmLVIE4bNopJVbX8avmHjCmv5uzhYzl8UCN3L19Ic2k5F46YyPH1w/n5ig9ojCe5fOQ0zhgyhp+uXMCgSJzrR8/komGT+ema9yg3o9w4ahZ5z+Hna98mroW4adQcLM/lnvVvYaoqNzUfi4NHUi9FCMF1w04AIKImcKXH5U2noqGgK1EKboELGs5AFxqCEFk3w9xB8zAUA1eqpJ0+jqu+gLAWw5WCAaeDmRWXEtGSONIlZW9nfNlVhLUKHFkgY61nSPIGwloNrsyQs1ZRlbgFU6vH81LY1lKisZtQ9CZkyXeRhUUo0asQSuyfeJZ+snGwrjB1qAXCx4T0Utg9l4CXw8s9DSJGtu+L/u95GpQ4ff1fw/N6gCeAGD0DP8D1OvC/H0TYm7oHy91ZZIOO9B8pFFsrSFR2Z14lY/kllq6UdOYW0V9YCYAjbboKG+nK++uFWl6ePrubXRm/t03WSZNzHbak3wUgbffiEGddv+9re61uTG0Qy3peBqCz0EHSHMH8zucB2JHbRUNkEq/teQ6ATZltjCuZzeM7n/NbAg9sY07Fsfxu63OAYEXvZk4ddDK/2vQ8AvioexOXNM7lx63PI4Tg/c6N3DL8LL676nmEgLd2b+BLY8/hq8v9/V/duYHvTDqHzy/y7//F7Ru4a/o8bp//HIoQPL9lPffMnsfN7zyHAJ7duJ4Hjp7H9a/5c1XPrl/Pgyecw7UvPY2U8Nza9fzm1LO57vln8aTk2TWtPHD62dz8wvM4nsdzq9u4f+6Z3P7ii1iuy/Or2oieYfK5F18m5zg8t6KV2FyDf3/tdVKWxfMrWolrBt9662368nmela3EFYMfLphPZzbL07KViGJwz5IP2ZVKIZGYUuN3LSvY2teHRKJ5Gs9sbqGtx59+ko7CO3s2sarLnzuzbMnK3nYWd24HYKDgsqvQzfyOjUigJ2eTlxne6vB73ezJ5onoLm90rPBzlk1RFwnx6u6FAGzN9DCqpILX9rwJwOZMB5OTQ3hz73MgYUt2BzNKJ/B+5x8BwbbsBmaWHs3irl8D0J5dzfSyc1jX82NAsDe3mHGl17Oj91v+gie592kq+wq9/V8GKcjm36Cq9Ee4fV8GFNzC6xiVbx0Ug72U4l/y2/rfEocG+o8J6awHWQD8PiBO9lmkTAds5Z5Cej1+0zMgl3sC19sdrM+Zzj2B5WwN+sX3ZZ8mZ69jn6PvzTxLqrCOfU6+M/0iPfZ+R9+ReYUeuzNYL3RX5k367Gzg5Hdm3v0LR78ts4CcFw/87Jb0IlAqAt6cWYaW7wrq4jen19BdyAd+d2tmI2lHD2q2d2R3Mr9rceDgd+c7eXvvfkffZfXz2p5lgZMXwMvtywPfLBC8uHMVeXe/s39h55rAh6tC4bntLViui4ckphk8u3Utjudiex5RzeDpTWsDxx7RdJ7dsM6f/3BsQprGM+vXIZFkHRtDVXmurRVPSrK2jSoEz7W14ngeWdtGAM+1tlJwXbK2/5ieW9dK1rbJFfmZtevoy+eD7c+sW0dHJkO+6OyfXreW7QP9WK6fw2fa1rG+pxvH8537s+vXsbJnT+Don9+0jrWpPYGjf3FLK9vyXQc4/Vb66A9eo9d2rQM1R67I73a0Ejctcq7/mi/samVQRATOfllvKwNuKHD2Lf3rgN1BTjdnWomrvUGdfUd+E5tT9v7+RtZ2dmZe2L8GgbubnuxTSJlDAo4HmewTB9TVC9zcM+ybt0IqSGcD4iBw9P5k7N/d3uB/ZBycH1+fUAitGdDxfWQILXKaf7l38WaE5iJEIuBw+ExUpRJBGCEiRENnoGt1AZeETyOkDw9qlpPRU4kZ4wKuiJ5I0pyCUnTwldHjKA9PO8DRH0lNeHpQE10bOZzB0RmBfx0cnUFTbEbg4BuiUxge38cmDZHxjE3MKPZCN2mMjGJCcprvd4VJfWQIU0unBL3Ua8ODmFk2pejkDSrNMo6onERIMTAVnVI9zjFVvnM3FZ2oFuKEQRMIqT6HVIOTascRUnVCio4uFE6qG01I1QipGooQnDJ4FIaqElI1EILTGkejCcVn4PSmUQghAj5t6EgAQpqGQHDasP2sCsFpzSMCNlSVU0eMQBGCkKZhahqnjBiBpiiENI2wpnHqyBGYmhrwaaNGEjOMA7aPpDwcLrLO6SNGMigWJ1zkU4ePoKmklLDme/9Tho9gdEVlwCc3NTOlqi7gExqamVHVQFj15wWOqxvOrMohPqs6R9eMYGblcMJFp3945XBmVowiVKy7n17WzIyysYGzn5BsZkpyUtHZG4yMj2B8yfQgpw2R4YyIzw7eAxVmI42xo4P3TFyvZVDUv/ZCESFMtZLSyNxgDQNVKSESOiNYl1iICGrotKKzDwE6Qhv26Z6Y/7A4tGbs/8oQSgK9/E+4mYcQxkzU0ImEy4dhZX6NZkzDiJxOmT6eTPoedH0ikeg8dHMm/QM/xzBGk4hdQjh8PJ0DP8XUhlOeuJpE9Ex29f8UU2ugOn4t5dEL2dr3c0y1mvqS66lNpNnYeze6Wsqw5A00yTzreu5BU6KMSl6HxGVF930owmBC2TWAx2L1IQCmV1wFKIS1clxpc0TlFSiomEoJBS/HsVUXowkDTYTJOAOcPOgCTCWMgkmf1cvc2nOIaBEkKp2FLuYNnktCj+NK2Jnr4Lz6kyg3k9ieZHN6Fxc1HE91uJS869I6sJNLG4+iLlpO1rFZ2buDy5pmMyRewTcmnMnizq1cNuwwhpdU8YMpZ7KgYwuXDp/K6NIa7pp5Fu+0b+TC4ZOYWFnLPXPO4tXtGzi/eTxTquv49XFn8eKmNs5qHsPMunoeOPlsnlu/jtObR3FEQyMPzZ3HUy0tnDS8mTmNQ3j47Hk8tmo1xw0bxlFDmnhk3rk8snwlc5qGcOzQofzx/PN4eOkKZjbUc0LzcIaWlvHQ4qVMravjlBEjGFNRyQMfLWFi7SDOHD2aabW13PvRYsZUVnLeuHHMGdLIrz78iGHl5Vw2cTKnNo/gZx9+SGMyydUTpzBv5Bh+tnghg2Jxbpg8nSutKfxk6QLKwxFumTSTrGPzkxXvkdBNbp0wG8tz+dmadzFVjdvGzsGTkl+2vY0Abhl5DEIISvUkrnS5YfgJqEIhpiXIuxZXNJ2CITRMJULayXJ+wxmEFBNVmAzYfZw26FzCagTQ6Lf3clTlRUT0EiSCfnsHU8quIKKX40mPAWsjI5LXEdar8aRF1lrFoMTNmHo9yDwFexmJ2I1o+lB/GUFrEWr0qoOk/cG+ydhDjv5/XUgvjd1zOcg05J5BKKVk+r+A9Pqwsk+BKKW//2t4Xie53BMIJUnXwA9w3F2Q84ASOtL3FvWNByLO7vSfyNn+coFCRGhPv0LKWuNfMi8MdmcX051fht+sTKEzv4k92YX+f6OlR4/Vw9b0ewDkvQJp16Ot36+bT7k5JFFW9L3qt1CwBzDUQSzoegkQdBZ6qDCbebXjJQTQnu+iKTqBp3b62zdn9jClbCZ/2PYyAkHrQDvHVh3FvZteQkGwom8H8+qO42etLyOEYHH3dq5uOpnvr3kFBcH8jm18fvRpfH3Zq6hC8Hb7Vr49eS5f/PBlVKHw+o4t/GjGGXzu/ZdRhOCVLZv55ZyzuPPNl3zesIn7jj+bW15+ESHgpXUb+c1pZ3Pzs/6cwkstG/jNmWdz0xPPA5KXV23gwXPP5sY/Pev3ylm+ngcuPItbHnsex3V5eWkb9198Nnc+9gIF2+GlJW0kLwnzhcdfJmdZvLi4lVIzxNeefoOBXJ6XFrVSZob4jxffoTeT5QXZSqkR4sdvLGDPQIrn5TqSeohfLVjEjr5+PClJKCYPL1/Bxq4eJJKo0Hm2bR1r9u5FSomJxjs7trBkdztSguIqrOjZxfx2f5lKx4FtuV7e2LEBgEzBJUOOl3b4JdO9eYeQ7vHMjmWAoCObpy5m8tRO39HvzKYYmyzj6Z1vAYId2R6mlTfw3C4/x9uzHcwuH8drex5HCMH27DaOKJ/Dgs6HEAjas23MLD+b5d2/QKCwJ7+KqWVXs7n3O4BKT34RI8u+RHf/vwMKufw71JT+CLf/3/3+TYW3MSrfOGgumjq08Mj/wpBOm9/ATGYAsLNP+IuKFDmfewzP21vsdwPZ7J9w3B0HOPrHKNgbAkffm32MjLWKfY6+M/UEfdZ+R7879TR7rW0B70y/QHehK3D021Kv0G3nAr+6OfUm/Y4aOPgNA+9hEcX2fG4bWIhLVeBr1w4sJaR2HMCr2JXd31elNbWefpuAN2W24+xZFDj47Zk9vLRraeDgd+d6eXbnssAvy0KKp7auCBjgiS2rAicvgCc3rwlq0oUQPLVhDQXXwZMSoRs82daCvc/R6wZPrm3B9YqOXtd5qmUtUnpkbYeQpvH0ar83TsbyHf0zq9biuD6rQvDMirVYjkvG8h39sytayNk2Gavo4JetJZXPky3y08vW0pPJBvzU0hZ29Q+Qt/3H/OTyFrZ09waO/slVLazt6Awc/VOr17K8azdesXr46TUtrOnfGzj6p1vXsiW/v+7+mY3r6HIHDqjTX4et58g6/vFf3rGWSMgJnP2be9YyKCYCZz+/ay1dlhk4+6W9LdjsDHK8LrWWsNLlO3oJO7IbaNWzwXuou7CFLalnA0eftnfSkX486KdkuXtIZR4NHL3rgZt9AsgX36YC6aw/SBz9p3Zl7KceB+fH1ycUvntUAAMIo4VPQGD4LMKY5kkIEQFMEBFCoZNRRCkCEyEiREIno6nVASfCJxHSGhGY/vqdkeOI6iNQMIu9bY4maY5DESaqCFMVnk15aDyqMFFFiJrITGrCE9GEiSZC1EWmUx/dxyb10Uk0RSeiF7khOpbm+MRiTbXBkMhIxiQmBOuVNkaGMTE5DlMx0YVOfaSOqaXjMBUDQ+jUhCqZVe77YEPRKDdLOKJyTMAJPcwx1WMIqzqG4tfCH1c7qsgqhqJxQt0IQqqGoagoQuHE+mbCRRbACY3DMVUVQ1GRSE4aOhxVUXyWkhOHDQcBhqL43Dzcr19S/SXBTxgxHE/6rAjBcSOHIZEYqoquqRw32vfHhqpi6hrHjRqGIoQ/L6BrHDdmOJqiBnzCmOGEdA1DUwnrGseNHk4iZGKoPh8/ahgVsQimphLWdY5rHsrgkkSRNY4Z1sTw8jJM1d9+zLBhjK+qJqT6Tv/oIU1Mrh4U8FGDhzCtqp6wqhFWdY4YNITDKhv97arOzKohHFYxNJjnmFo2hOnlI4J5kQklQ5hcOtrPmaIzIj6E8SX7cqzTEGlkZHwqhmKiCYMKs5Yh0VloIoQqDGJ6FXXRo1BFCEUYmEqS8sgJKCKMwEQVMaLhU4utiA2ECKGGTio6egNQDyJH7y8O/rfc/tXi0Df6jwmhJNHLH8PN/NbvRx8+nZg2mkLmPlRjOmZkHqXG1KCOPhq7GCM0h76BuzGMUZTEriQSPpm9Az/H1IZREb+aZPRsdvb9nJDWwKDEtVTGL2VL790YWiVDSq6nIZGmtfcedCXJyNLrGOnlWd1zH5oSZVzZNbiezZLuB1GFwdTyK5FIPuj0u0MfXnk5AoW4Xo3j2RxTdSmqohLXSsm7OU4edEFxIe04aSfFmbXzCKlhTCVMr93PufVziar+2qV78l1c3HAqCT2GECo7Mp1c2nQ8FWYJnhRsSu/hiqFHMyhciislLX27uHr4EdRHy7Bdj+U9O7m6eSZDExXYrseivdu5YuR0RiYrcQ73mL9rG5eOmsS48hp+etRpvL19CxeOHs+k6lruPuF03ti8kXPHjGNabR33nn4GL69fz5mjRzGzoYH7zz6TF9a2cuqYkcxuauSBC8/i2ZVrOX7kcI4eMZSHLp3HE0tXc/TIoRw7chi/vfJc/vTRSmY3D+H4Mc3Ulyb548IVzGiq5+RxI2iuLOf385cxeUgtp00cxbi6ah56fwnjB9dwztSxHNZUz6/fW8TImkounD6Ro0cM5b73FjG0soxLD5vEaeNG8cv3PqKhtISrZk7hgsnj+fmChQyKx7n+sOlcU5jCTz/8gLJwhJtnHEbOsfmvj+aTME1unzoLy3P5ybL3MVWNOybNxkPy09XvIoTgznFHAvDL1ndwpcdto45BEYJyvYScZ3H9sBMwVJ2YFiftZLmk8dTiIihR+u0+zq47k4gaRVVM+qwujq85j6iaQAidPmsnMyouJaqVIVEYsDYxpvQqInoNUnpkrBbqSm4grDcgpU3BWkZJ/EY0fRhgIa3FB5ejl2B7/3qD+N8Shwb6jwnpZbF7rgE5gJd7DtRqMn3/hud1FZ19NX39X8N1dyNzT6Ko1ewd+IHfijjnoSjV7Bm4l7y9HomLqpSzM/VnUtYawENRStmZeY2+/DLfyIsYO3PL2Zv9CImHUMJ05DazI/M+ft29RrfVy4aBN4vOHtKuy6q+1wDIew4uMRZ2vwIIUm6BiFrNGx2vIIA+O01laBjP7noVgWBvoZ/h0fE8uuN1BILt2R5mlE3jwc2vogiFjalOTqqezS/aXkcVgjX9e7io/mj+q8XnZd27uKn5BL69/A1UIfiwo51/H38SX1/0OooQLGjfwfemn8aX57+GKhTe2badnx5xGl944zXf4W/cyj0nzOVzL7+KIgRvtm3m12ecxeee8ecA3li7md/MO5s7//wiAnhj1UZ+c9E53PnIC0gpeX3ZBh688hzufOh5HNfj9cXr+fW187jtgWexHJdXP1zPr288h889+ALZgs3rC9uovjHCl377Mum8xasLWqmORvnGH1+nN53l1Q9aqYnG+f4Tb9HZn+Flr5WqSIyfvTif9u5+XvbWUR2Ncv8bi9jS2YPnSSrNMI98tJLW3Z14UlJmhHi+pZXlO3YjpaREDfHO1i18uHVH0eEbLO/cxVtbtiClxPBUtmb7eHGjv8ShdAQpcjyxye9TVbAkuiF5dNNSAPoLNrWxEL/f8iF+3XuecckyHt7qfzC0Z9PMrKjn8R1+jndme5lTOYbndz2LQGF7toNjq2bx5t4/IFDYmd/GkeWns6TrlwhUOvKtzKy4ko29P0Cg0ltYwdiyz9Pd/xVAJWd9QF3pj7D7vwpCwbXmY1a+dlAsPuKrm0MD/f+6kM46kAP+ZCxgZ/7k97LZ5+izf8B12wNHn848jG1vRhZrjPsyD5OzWgJH353+AwOF1ciio9+depTuQrEfPbAz9QS7CjsC3jLwDJ2F7sDRbxh4gS4rH/jV1v5X6XeVwNG39L9F1ksEfnZl33wEFQEv71uEqe4K6uSX9a5gS3ogcPIr+tbRmbcDJ98ysIWcowe8fmAXj29fHDj6reku/rRlv6Pfne3n0Y3LA59MHh5tWxH0jQF4rHU1OWe/w/9zyxryju/oMQweW7kGyy06ekPnsRWrcTyXguMS0XX+vHQ1juuSsx1CusYTi9dguy7Zgo2hqTzx0WosxyFTsFEVwZML15At2GQKFgJ4auEa0nmLTN5/zk99sJredJZswX9MT3ywio6+NDlrP+/o7Asc/eMLVrFhTxeW4+fwzwtXs6p9T+Do/7xoNcs79rCvw8efl6yipbczcPSPr1jNxlzv/v1bWtjrpoLX6InWNeSMQuDon9rcghl2yBZf0+e3t1CTUILX+PXdLWzPGQf0yllNxt0W5HR53xpU0RHkfFO6lVK974A1ZzeyYeBp3H3rDltb2DnwaODo885O+jN/2O/oXYmV+SOQ85dN8ATSbj0oHD0cvFfGHpwfX59QCG0o/hSiCoTRQscg0ADNr6M3j/N7faAhRIRw6FgUJQ7oCBEhZh6DplYg0FFEmHjoaEytLuBk6AiielORQ1SEZ5E0RqJgoIoQVeEZlIdGFdmkJjyFmvAYVOFzbWQCgyNjiiWTBoMjY2iKjkEXBprQaYiMoDk2+gBuYkxiFIZioAmNhkg9E5OjMItcF65matmIIqtUmaUcVt5MSPH70pQaMWZXNhf71CjE9BBHVQ8P2FQ1jqkdFrCmKBzbMJywqqEK36kf3TA0qHmXSI5uasJUVVQh8KTk6KFDUBUl4GOGNyEQPiM5ZkQTElCFf0IeNaoJ6UlUIVCE4KgxQ/EkqIpAV1XmjGnyr0FWBKauccTYoX5GFUFI1zhi3FD/eIpCyNA4ckwTpq6iKQphQ+OIMU1ETGM/jx5CMhpGUxXChs4RoxqpLomhqwphXWP28AaaypMBHz6skZFVlb7j1zRmNtYzrqoKU/Vr92cOHszEqkE+qxqH1dYztaou4GlVg5lW0UBI0TAVjcnldUwtH0JI8edFxpbUMal0OKaiowuN5vhgxpeMDnJcH65lVHwchmKiCo1ys5Km6BR0YaKgEVNLqY3OQhUhBBqGkqA8clTR0WuoIkzEPK74jV1DoKOFjgPCxfNCILSmT//k/AfEvvLKv+X2rxaHvtF/TAilFL3sMb8fvTEDNXIWMX0M+cyv0fSpmNELqDSmkUr/CkOfQCR6GfWhY+kZ+AWGPpJk7GoikdPp6P8Fpt5EVfw6ymIXsK3/F4TUwQwuuZa6xBVs6LsHU61kWPJampIZ1vTci6EmGVt6DbaXZ3n3A+hKmEnlV+N4Nh91/RZF6MysvALP83iv8xEAjqy8BCEUXu/4M450OLH6AjRFo0SvIO/mmFt7LrpqkNBKGHDSzKs7g7AWIaJF6CkMcFHjqcS1CCElxJ58D5cNOZEyI46u6GzPdHHV0GOpCiVQhMrG1F6ubZ5DbTiJQLCmdzfXjZzFkHg5nhQs62znutHTGZ6sxHU9Fu3ZyZVjpzK6rBLPk3ywczuXjJvIhKoaOBHe2bKFC8aPZ0ptLepchTc3bGLe+DFMaxjML849nVdbNjB34mhmNtVz98Vn8PLKNk6c0MycEU3cc9VZPL90HceOG8bRY4dx//Xn8PSHa5gzponjJzZTm4zz+PurmDm6gZMmj6CxIsmf313J1ObBnDptFCNrK3jkreVMHDqIM2aOZcKQQfz+zaWMbaxm3uwJzBrZwEOvL6a5toILjpzEsROG88Dri2iqKuOSoyZz+rQx3PvGRwwuS3DVUdO48PBJ/PLNhVSXxLhuzgyuy0/n5+99QFkkwo1HzCBr29y14AMSpsGts2ZRcBx+smgBIVXjjhmH43oud61YgBDwmclzEMDP1ryH63ncOf5INEWlJpQk59jcMvIYQqpOqV5Cysly9dATiWohYlqMXrufC+pPJ6pFMNUIPVYXpw06h5iWQFNMeq3dzK68gLhWjoJGn7WZ8WVXENVqEAjS1loaSq4jrDcihCRfdPS63gy4RUd/NUJJ/jNP008wDqmb/5UhZR677ybwuvDyz4PaQKb/C3jubuzcsyhqI939X8Vxt5PJPYWiNrJ34IcU7PWAh6Y2sDP1AFlrDeCiKYNpTz/BQMF38oZWw7b0m3TlfCdvqJXsyC6jPTMfiURXStmd28ym1FuARBExuu1e1vS9Vqy7N0k5Hou6fUdvSxVJlLf2vgYICq5HRKvmhT2+g0+5NjVmE0/sfBMFQa+VY2R8DH/Y+iZCCPbkBzi8fAr3b3wLRQi2Zfo5teYwfrb2bRQhWN/fw2VD5vCfq95GEQqruzu5Y/SxfHvxW6hCYfneDr4++QS+8cGbKEJhya7d/GDWyXz1Lf/+PtzWzk+PO4WvvvIGihB8sHE7vzx9Lv/+7GsIBAtat3HfeWfy5T+/AsD7q7fwwGVn88WHX0Z6kneXb+KB6+bxpd+8hON5vL1kIw/eci5fuu9FLMflnQ83cN9nzuVLv3yeXMHm7Q/WU/u5OF/6xfOkswXefr+Nwf9Wwtd++RL9qRxvvdNKfWmC/3jgNTp7M7z59joGl5bw44ffZndXP29666hPlnD3k/PZtqeH1zxJfWkJD768mA07OnE9SW0izp/nr2T11j14nqQ2GufFla0s3rgTT0qqQlHe37yN99q24ElJqRFiVUcHr67bgIdfh78108fTa9chpSSMTp+X55G1qwBQHBXVhIfWLgcBBVsyqCTMg21+/6MBy2FsWRm/3bQAIQTdeYtZVXU8su0NhFDoyGU4pnoUz7Q/X8xxD8dXzeS1PY8hhMKu/G6OrzyFD7vuR0Fhb2ErsysupbXnR0VHv5bx5Z9lb//X8R39MgaX/ifOwNcBBc9ajFL5EkKEPu3T8x8S/x/WjP2XikMD/ceEtFvA695fR595GM/dHXAu+xCOuzVw9KnMgxTsdUEdfU/6N2QKywNH35H+HX35VYGjbx94mI78evY5+c39f2RXYWfA6/sfZ0++Gw/f37b0PUuXnQ+c/KreF+l19KCPybLeN8i5scDHftTzLpKKgBd2LySibA/4g66ltA3sX6/0w+4WdmXzAS/t2chAXgb+d1XfDn6/aXFQF79+YC+/a1sS8LaBXn63blngm3dnBvj9muWBkxdZeGTFyqCPDMCjy1eRtx1c6a+y+ujiVViOg+V6SCl5dOFKLMelYDtEDJ0/LfA5Z9mEdI3H3l9JwXb2O/p3VpIr2GTyFqoieOKdlaSyBbL5oqN/ayV9qRzZoqN/4s2VdPamyeb9x/TkGyvY1dlPrujs//zGcjbv6qZg+c/psTeWs25rR+DoH3trBcu278Jxfef+6LsrWLF7v6P/0/wVrOne7+gf/XAlmzN9gaP/45JV7PbSQS+dR1auJKNbwWv2p3WrUaJu4OQf37SayuR+R//s9lWsS4eCHL22eyVd9qYghwu7VyLFTizpr4mwdqCFqNqNXeQd2TZa+jK4soAL9BQ2sK3/D4Gjz9hb6E3/NnD0trsTK/P7/f3pvb1Ie91B4ej9qptDvW7+14VQh+z7CQijmXPwvaQCIoxuHIlfS6wgRJiQOQdFRAEVIcLEzDloShJQUUSYEvNwDLW6yCFKzBlEtXoEWtHRT6PEGFp0oyZV4UmUm8NRhI4qDGrC46gONaPi86DwaOrCw9GEjiZ06sLDaYw2owkdVWjUh5tojjWjC933tZF6RieGYyg6qlCpjwxifHIYZpFrwxVMTg4tskKFmWB6sYZbFQpJPcKsKr8vi4ogohrMrvFZwXfis2uHENZ0FEBRFI6sH0JY04LvSUcMaQzYk5LZQxrQVf/k8qTH7GENKIr/tnSl5PCRQ4K/9aRk9qhGDlzK4PDRjcHFSYoimDmmEbc4iOqayswx/v4CMA2NGWMb8OsrIGRozBjXgBACIfZxI5rm1+SHDI0ZYxsJG9p+Ht1APGKiKD5PG1VPeSLiO35dY3rzYAaXJfx+OrrG1GGDGVpVjr6Ph9QxsqoCXVUwNY0p9YMYW1Xl1/mrKlNqa5lQVYOh+rX9k6pqmFRRi6n41xqML6thclk9pqKhKyqjS2qYVNros1AZFq9hXImfY02o1IWrGBkfiaEYKKiUGmUMjY4vOnqFiJqgNjIFTYQQKOhKhPLwLBQRBhRUYRI15xQdvYJARQ3NKdbRC3xH3/iJnnf/rNh3wdQhR/+/LIRajl7+KE76t6jmYaiRc4kZ48in7kc3p2JELqbaPIyB1D0YxgRi0SsJhU6ge+AXmPooSuPXEoucQfvA3YT1odTEr6UifiFbe39BSK+noeRa6kquoq33XkJqBc2l1zI8mWZVz/2YapLxZVczyc2xqPs3GEqEaeVX4EqH9/f+Hk3RObzyUiSSN/Y8CsDxNRcBCi/vfhLHszmt9rziBFwFOSfHOXVnY6ohkkYJKTvDhfWnE9HDJLQY3dYAlzWeRIkRI6qH2ZXt5Zphx1FuxjEVg22Zbq5vPpJB4SSGorG+by83jD6ChmgSVSis7t7DjWMPY2iiHAXBso52rh0/nVFllSDho107uWriZMZWVoMUfLB1GxdPnsikQYMQwHsbt3H+lHFMra9DEwpvrdvMWZPHcNiwekKqymsrN3DalJEcPnIIUd3g5aVtnDilmTljh5IIh3hx4VqOnjycYyYNpyIe5dn313DExCaOnz6S2vIET725isPGN3LS4aMZUlPG46+tYPLowZw+ZxyjGqt59KWlTBhRy5nHTGBicx2PvLSE0U3VnHP8RGZNGMLvnl/M8PoKLjhxMsdMG8FDL37EkJoyLj5xKmfMHsv9L37I4MoSrjhhOhcePZlfvbqQ6mSca46fznW5PHe/vpCyaITrj51B1rL4+dsLiYdMbj5qJnnb5ucLFmLqGrcfPgtXevzkowUIRfDZ6bMRAu5aMR/bc/nc5CPRFYVfrHuXnG1z+9ijCGs6FWYJA3aOG5uPJ6ablOhxeq0BLh1yCgk9SliN0m31cGbtGST0EgwlRFdhF8dUn0eJXokiDHqtrUwuu4y4PghFqAxY62gquZaI7n/Y5u2VlMZvwNBH4iBwC4vRYlchlLJ/5mn6icYhdfMxIYT4DXA6sFdKOe6vbBfAz/CXycoCV0opl30Sx/5HhpQFnN7PIL3dOIWXQWsm3fcFXHcbhcILxLVmevu/ge1sIJd/Fk0bwZ7+H1Ow1yBzz6DrI9g58CDpwlLAI6QNY2vqSXqLTt7UGtmWfps92feReIS1wWzPrmBb+i0kkpBWxa7cNtb2+w7eVCvosnpY1vt60eEnSDlusF6oKsJ4xHhtz1sIARKDqFbJ87veQiBwpEJNqJHHtr+DgiDjuIxOjOJ3W/wa7N5CgdnlE/lV27soQqEjl+WMuhn8rOU9FBR2pFJcMXQWP1zmb9/U18cd447iex++iyIEbV3dfH3acfzHu+8iBLTs7uIHR53At9/wG3St3rGHH598Ct9+/k1AsHzzLn4+73S+9aR/XcCSth3ce9mZfOOPr+N5kkVrtnHfDefwjd+8iuN5fLhiK/ffPo9v3Pcytu2ycPEm7vvC+XzrFy+RL9h88MFG6r92Id/+yYukswU+eG89Q75Vynd+9AJ9AzkWvNPGkOpS/uNHL9Ldk2bBm60MG1TGD3/+Krv39jP/zVaGDSrnZ79+k+07e3hXrmXYoHLuf+R9Nm7t5B1PMqymjN8/u5i1G/w2B02VpTzx9v/D3nmGyVGca/uuTpPT5rwrrVarXeWccxaInKMBE2ywMRwMOBzjeIx9HLGNA2CCyTlJBAkFhHLOWVpJm3OYPNPd348eza4cMD7mmGM+Xl1zrZ6p6jBd3T09dz311i62H7CYfFlGgLe2HmTd7hoM06TY62XtkRMs33kYw4R8t5tdDU28uX0/JpBtd3Iy2MWL2/ZgmhBQHHSaUZ7ZvhsAj7Ah2eDxnTsQAjRTJdtr55G9WxEIdF1QlZnBHw9tQAhBJGEyIaeAJ46vRiDojCeYnTeQF2rfRiBoi4WZnzeGtxtftJh+opO5OXNZ1/IYAom2WCPTsi9nX8cvEEh0J44zPON2Grq+B0iE43spzbifRPd3AEEiuRMp6w2EsP3rL9CPOT5Lavb34zGsGaSe+BvlC4GK1Gs88NvU3//TYSb2Yhq9TD4R/CO6XtObfz70CInkoV5GH3yIaGJnmtG39vyBnuiWNKOv736Ytkivj/5E1+PURa0EZwCHOp+kLlYLWOhhf8dz1MY60U2Lt27veImWeDTN5De3v0FHQrZ4K7C+7R1CujfNX1e3rECITOIpXrui+QOc0rG0Xt60iV2dzWmeu7J5FzU9IWKGxYs/aDlEW1hPM/hNrSfQ43Ja725v4JG9m9N5Wg51tvLHXVvTHvAT3Z08un1bmsk3BHt4cvN2wvFEmlk/tWEHkXgCPYVfnvpgB9F4goRuYGLy9KrtRBNJYgnLa//se9uJxhJE40nsmsJzy7YRicYJRxNoqswLb20jGI4RjsSRZYkX39pGZ3eEcCSOEPDyku20tQcJR6xj9tIb22ho6iKSYvQvvL6VE6faiZ5m9K9t4dCx5l5G/8YWdh2sI5Gw2vCZJVvZfqyX0T/11lZ21jamcdKTy7axt62Z07TpyVXbOdrT66P/0wfbaTRCRFI+/Sc2baNbS6T7OZ7YuQNcRvqYP7lvB/5Abxs8e2Qn5V12oqk2e+Xkdk5Gj6Tb9L2mHUTNE+k239qxE4fckD5HjgZ3k6V0pX31TdH9HOt+PM3oe+KHaA0+kmb0seQx4qFH09eAqddjJvZ9Khg98Kl13Xwsn8o0zfeB9g+pci7whGnFBsAvhMj/OLb9vxlCLu6jHMi2CaQPmXCgahOwvisFQjiw2cYjCXtau2zjkCUPICEJOx5tDJqcmdZ+2wicSj4CGUnYyHQMw6cWWxxUaGTZq8nQSpGQkYVKrr2SHFsZklCQhUqevZwCRxmyUJCFQoGjjBJnGYpQkIVMoaOYclcZakoXOfKp9JShCYu5FzlyGOwrtZg8Enl2P8P8xdgki7lnaC5GZRZbueMReFQbY3OKU/O5Yvm+c4vSzF2VZMYXWhosojuxqCStMWFsSRF21dKGaTKmrAhNsRi9bhiMKS9CTjF6wzAZW1FMyjKPaZqMHtS3TWB0VTGGkWL0QjB6cDFGmtFLjKguSZfbNIXhg4vTjN9uUxkx1GL0aT2kGFk+rRWGDylG0xSL4dsUhg8qxuXQ0kx/+KBC/B4HkiSwaQrDKvLJDbgtrSoMH5BPSZYfWZKwKTJDS/Moz8lAOa2LcxmYk4UqSWiyzOD8XKqzs9O6OjubIVm5aJKMKklUZWYzLDMfmySjCIkKfxZDA4XYJGusQn9PNoP9pVY/DBL5jgwGesrRhIqEhF/zUeYahCo0BAKH7KbAMRRF2ACBKtnJtI9BTp/HKi5tfHrkq0BG1sZj+ej/2nXy7xumaf3q/Sivf7f4VzH6QuBUH12beq/hzysKIW4CbgIoKSn5l+zc3wohZ6NkPGnNGauNRXZehlcdSjT4BxRtFHbXteRoE+kO/gabOgy3+/PY7fNo7X4ATR1EludmvM7zqe36FQ6lHwW+m8n2XM7Rzl/jUIro57+JYt917O/4LXY5m6qMG6n097Cj/SFsso8RGdcz2oywrvlRNMnFxOxrSJoJVjY9iSIUpudehWEavN3wLAAL8i9DIPNq3cskzQTnF16IIqm8cOoNInqUS4vPxS7byLD56E6EuLp0EW7ViU910Rbr5vr+cwloHtyKnfpIJzdXzCLH4cUhqxzvaefWqmkUuvyoksyhrla+WD2Jft4MFCGzu7WJW4aNY2AgC2EKtjc28PmRo6nOysEwTbbU1nLNqFEMz88DBOuPneTKscMYWVyILARrDtRw0bghjOtfjCokVuw5xrnjqplUWYpNVli+7TCLxg9iypB+uDWNdzYcYM64gUwfNQC/08HSNXuZPnYAs8ZXkulz8uby3UwaU87cqVUU5Hh5del2xo4qY+GsIZQVZfLKG1sZPqSYs+YOZWB5Di+8soXBVYWcu2gEwwcX8cxLm6isyOPCxaOYMLofT764kfKybC45ZwwzJg/k8Zc2UFqQwRXnjeWsmUP448vrKcz1c/XicVy2YBS/e3U9uRlurj9rPNeHIzy4ZD0Bt5ObF44nGI3zq3fW4XHY+OJcy0f/y5Xr0BSZL8+YZDH6tZZd8s7JFqP/6aYP0E2DO8dOQZNlfr7rfSLJBP8xfDoORSHH7qM7Hua2QbPwanZ8ipv2eA839J+HT3PhlJ20xtq5qGgxGTYfmrDTEm9gTu6FZGo5yEKlPV7D2Myr8GmFCGS64wco99+AW+1vYaH4DrI8t6CqVUgI9PhmFNd1CDnrE71OP874DN38c/HXjp75V97DNM0/AH8AGDNmzF+t868K04yhd30NUz+FHluGUIcR6roHPXmYeOxtFHUYbV3fIZ7YQyiyFEUdTmP3zwjFt0FkKXZ1KLU9j9EVXQ+YOG1DONH9Ci2R9wETjzaI4z2rORVakdIDOBnexZHu5ZgYeNRS6qIn2d1llXu1AlpinWxqXwmAU8khpBt80LoqpTMwTCfLmixGbpc9uJQsXq9fA1gMv8BezHMn1yAQGKbCYO9AHj+6FoEgmoSp2UP53cF1SELQE9c5t2gUD+xZZ/HdaIzrBozj59vWIYSgoSfEHUOn8N/rP7DyqnR0840JM/jx+x8AcLy1g/+aNZcfv/M+JnC4ro3/XjyfH72+CsM0OXCymV9cdjb3v7AS3TDYe7SBX11/Lvc/uYJEUmfP/jp+8+UL+NEjy4gldHbuOsmD91zMj3/zLpFYgu1bTlD27QA/+cXbBEMxtq07RvmPsvjpf79FZ1eErWuOUlGcxc9++CatrUG2rDxEZVkuP//BGzQ1dLHp3f1U9s/lF/cv4dTJVja+vY+q/jk8+KvlHD3axPp39jKoXy6PPvo+B/bXsxYYVJrDsy9tYufuU3xgmlSV5vDqsp1s2laDaZpUFmbz7qaDrN50GBOoyMtk/YGTvLvB8smXZwbY3dDE0vUWoy/x+TgV7ObVjXsxTSh0e+k2Yry0ZS8mkGd3I2zwzK7dYIJfcZLpt/P43h2WF0zYqMwO8MeDmy33ECoTcvP503GrTROGYFbeAF6ofQ+BIKTrLMgbxZIGy1ffnYixIHcm61qfssZaJLuYln0x+zoeBATBZBMjM2+lset+AKLJ4/QL/IBYz/cBMJIHsGe9hhDav+KS/F+Nzxj9Px+1QN/fd0VA/b9o2//jMBN7MfVTfXz0D6EnD6f5ZCj0e+KJ3Wl+2dnzIKHYZkws3tnc8zs6I5sxU7lqart+R3MfRn+s82FORI5w+jtvX/vj1MVqrUlKgJ3tT53B6De1PU9jLE4yxeTXtr6aYvSnGfsSwrrH0ia807gslevGKl/asBq3nE88xXPfrF/PltaGNJNfWr+DQ51dab2sYT+NPbE0D17TeIxYlDST39Jcx+92bE7z5D2tTTy0dUuayR9pb+eRjVvTud9PdXbx+LpthGJxTKCpO8if3t9KOBZHN0wEEZ5csY1ILJH2qT/9zlbCsQSxeNLy1S/ZQjgSJxJLoOsGz7++lZ5QlEjEYvTPv7yZrq4IkRSjf+GlzbS1BYmkGP1Lz2+kqbGLyGlG/+wGak+2EY2kGP0zGzh6pIloitk//+x69u+rIxZLMfHnNrBtz6k0o3/6+Y3sOFyXZvRPvriBnaea0oz+idc2sbe5Jc3oH3trM0dDnen6j763hUY9lM6l88j7WwhqibSv/pGNWzHcZlr/cedWPBkKsVQbPH5gK2XtjnSbPXNsK4dCnrR+s24bXXpvv8y61u3I1KUZ/b7uHWQqLWlGXxvezeHOcDo/fWdsL809v8dInfOxxEGioYfS14Shn8BI7EX+1DD6T+eN/l8Fm14HrhFWTAC6TNP8C2zzfy2EXET6h4dwIKuj6f1x4kBVR2H56kn56Eel3QdC2HFpI5AlNyCQsOPRhqHKfksLG16tGoecjcXsNTIcVXhUi9nLaGTZKwhohRajRyXb1p9sW1GK2Svk2kvJsxelGX2evYgiR5HF6JEpcOTTz1WY0hIFjhwGuIssZo9EviOTKl8hmmQx+Gy7h8H+AmySxdz9moNhmVbudAG4FI0RWfnp+VttsszI3Pw0g5eFxMj8Xi2AkYX5ONJMHoYX5/cyesNgWGlB2kevGwYjyguQJJGqbzK8oiB9xE3TZFhlYfomCjC0qiDN4IUkGFpdeIaPfvDgQvRUuWZTqaouwkxpu12lekiRNcoYsNlVqgYXpbdvs6sMri5CSfUh2GwK1VUF2O1qWg+qzMPttiOE1QcwqCKPTL/LynmvylT1z6Mgy4csWXpQSU6K2Qs0RWZQUTb9si1mr8oylXlZDMjKtLQkMTArk8pMi+GrksSAQAZVGTloKUbfz5tBlT8PTbLyBZW4Mqj09rZprt3HAHcpmlARCHyqm1JXf1ShAQK75CTPUZli9KAIjQz7sF5Gj4JTG9knO6VAVkelfPQAJpJc9HevpX+H+Ff56IUQGUKIZUKIw6m/gb9R749CiGYhxJ7/yfJ94+OyVz4DzACyhBC1wH1Ys2pjmubvgKVY1sojWPbK6z6O7f5vh5BzUAJPoIf+aDF611V4taFEg79DVkfjcH+ePNtkunp+haYOw+f5Anb7fJq7H8CuVpLjvRWv8wJOdT2AQymjyH8r2e4rOJJi9AMCt1Dia2NPx+9xyJkMybiJwRk9bG75A3bZx5isGxhnRFjT/Cia5GBKzudIGAmWNT6JIlTm5F2JYRq8Uf8cAIsLLkUImRdOvUzSTHJx0QUokspTJ94kqke5qvQc7LKdTM1LVyLEDeVWbhuf6qQ11sPNA+aQaffgVmzUhju5bdBM8p0+7JLK8WA7Xx48hVJ3Bpokc7CzlS8Nm8gAfxYyEntam/jCqPFUZ2YjIdje0MCNY8YwNDcX0zDZcqqOz40fxYjCfIQpWH/0JFdMGMHY/kXIwJr9NVw0aSgTB5aiIFi58yjnTR7C5CH9LEa/6SALJ1czfdQAXHaNZe/vZ9akSmZNqsTrcvD2e7uZNqmSOdOryAy4WbJ0BxMmlLNg3jAKcv289soWxoztx6KzR1BWmsmrL2xmyIgSFp8/moGD8nnx6Q1UDy3i/EvGMWxkCc89tZ6KyjwuvmwCYyf25+kn19OvfzaXXT6R6TOr+NNT6ygpzuDKyyexaMFwHn1mLQV5fq65ZCIXnTOGh15YS06GmxsumsR1wQgPvrSWgNfBzedNshj9Gx/gdti49azJRBMJfvHuWmyKwu3zJpE0TX628gOEEPzHzMkgBD9ZtwbdNLlr4hRUReKnW9cQTib46uhpuFSNXPsquuIR7hwyE59mx6+5aI/1cHPFXDJtbhyyg7Z4B5cVLyLbHkCTbLTEmliYdwHZdovRt8VOMiHrCjJsxQgEXfGDDPRfj1erQEIQju8g2/MFbNpQEoAR34zi/jxCzv5Er9OPM/5FPvp7gfdM07xfCHFvSt/zV+o9xl93M37U5dPxsdzoTdO8/O+Um8CtH8e2/pVhmgn0nu9iJg6jx9cgtAmEu79LMrEbYqtQbRPp6PousfgWItH3sNsm0dD1S4KxdXRHluOyTeBU959oj1hM3Wsfz4ngGzSELebut4+kJriWE0FrztcM+zBOhvdysGc1AJn2QdRHa9nd9T4mJlm2AbTGu9nSsSZVXkwwYbCmda21vJaPiZPlTWsBQUDNSjH69QjAo/gpcBTy/KkNADgVN9Wecp44uhEABRtTc6p56NAma8yjqXBu8XB+t8cqTyZMrh04lt9s24RpmoSiCW4fPolfb9yAaZp0haJ8bdJ0Hli9AcM0aO0K8505s3hg2Tp0w6ChtZsfnjefX77xAQnd4FRDJz+5ahG/fGEN8YROzYk2fvGFc/jlU6uJxpIcPdJC2X8E+NVDKwhH4hzZ28iA+7L4za+X09MT5cCOWgaV5fDgz9+hoyPEvk0nqBqQx2//eymtzd3sWXuUIVWF/O6HS2iobWfX6sMMG1LM73/4JqeOt7B95X5GjCjhDz98k6MHG9i2fC/Dh5fw8E+WcmBXLVvf2cPI4SU88ftV7Npaw2YBw4cU8fJzm9i8/ggbhWB4dRFL3t7F+jUHARg+sICVGw6zdpWVX35YeQGb9p9k1fsHMTEZUpzHvvpmlq21yqvycqgNdrN0w34AKrMz6dLjvLp1HwIo9wfALnhxpzWHbLHLS8Dn4Om9Vi6cHJuHAdl+/nRwOwB+xcXYvDyePm61mU12MCuvPy/WWvMMG6bKgvzhvNX4DqYJcUOwMG8aH7S+iAlEjAQzss9nb8cfMTGJ6CHGZN5MY9fPMTFI6C30C3yPRPCnYCYxjXrkzBcQQv1Yr71PIkwTkv+aiUfOxXowBngcWMVfuVGbpvm+EKLsf7p83xB9h5P/X4sxY8aYW7Zs+cS2b8S3pyYHt3ikaT+HUHRpmtHL9rPpirybZvQ22wJaImvSjN5ln0FjeEua0XttE6nvk+vGr43gRORomsn71YGciNandUAr5VS0I83o/WoeDbE48dScsF4lQFtcIaRb+fJdspuI7qEj0QmAXbIB2TRG2wBQhYJHyedEqBmw7I8FWin7uxvSutLVj23ttdbnExIjPf1Y32RNZK1KMpMy+rPq1HHr88oyM3L6s+zYUQAcisKcwgEs3X/I0qrK/LJy3tx5AACnprKwYiCvb7Y6Hl02lUWDK3lj3T50w8BpU1k0spKl71vzvDrtKgtHV/Luyn3E4kkcdpUFk6pYtnwv0WgCm01h/oxqVryzh0gkjqrJzJ8zhFVv7yYSjqMoEnMXDmf10l1EwnEkSTB38XDWpMoRMPusEaxdvpdoitlPWzCUjasPEksx+smzB7Np4xHiKUY/bupAtm07kWb0I8b2Y8f+OvQUcx8ytIhdNU1pnFQ5IJe9Ta1p3NS/OIsj3b2MvijbR6MRTue/z/W56bYl6IpY51CG04Huhdawdc55NA1XpkpdsNtqY1mhOM/JsZ62dJuNKnBzqKcx3aZT8gMc7DmR0hIzc3I4FDyQqi8zLauQmtDWlFaZ6CunMbI6pW2M8AynJ/ImAEI4KXfPh+hr1kUinNgznkHWRvBJhhBiq2maY/6ZdXgrc82xv7vyI9VdMevn/+PtCSE6TdP099Edpmn+LXxTBrzZdyDqP7L86fj3M4T+C0PI+ZwevAQOJGVYn0IHqjKM04dQCAd2bWj6yUZgx6UORZasnCCSsOHWqlAkr6Wx4dEqsckZKa0RsFfgVnKwLkeVDK0ffjUPgYQkFLJspWRp+Ugpap9tLyLXnpdSMrn2fAocechCRkIiz55DiTMP5bR2ZFLuykMVcorfBhjgzUWTFASCTJubSl9umtH7VDvVGTlpRu9UVKozc9KMXpNkhmTnYD/tmxeCwbnZZzD6IQU5aSZvmiaDi3rr64ZJVUkOqtLrm68qy0VK+dgNw6R6QP4ZPvpBA/PSPniBYFBlfto3L0kSlX2YvazIDKzKT2tVU6io7i232VQqBhecwegrqgsQfRh9RXV+L6O3q1RU5qPZLF+9ZlMYUJGHy2WztKZQXp6D3+uwtCozoF8O2ZluJCFQFZny4iwKsrwpLVFemEVxpsXwFVmif24GpRkBFMnK598vK4PyjIy0LgsEqAhYuXNkISjx+qjwZVlz8iIodHkZ4MlNzckryLJ76OcqQBVWG3pUJ0XOYtTUeWqT7OTa+6OkXDOKUAnYB6UYveWbd2pD+vjoQVaG0eujN1PXyb9//IOMPksIsaXP66a+6xJCLBdC7Pkrr3M/ic/2Wa6bDwkh56EEHkUPPYzQxqG4rsOrDScSfBBFG4XDfQu5tsl09fwCTR2G3/tlbPb5NHX/Ers6kDzf7Xid53Gi6wEcahml/i+T672CQ+2/wqHkMzDwJfr5W9nR9iAOOZvhmbcwJKOLDS1/wCb7mJh9I1E9xMqmx9AkOzNyryNhJHir4U/IQmFh/tUYmLxca/noLyi6DJB45sTLJMwkV5RciCqp/PH4G0STMa7rvxin7CBwxE1XIswtFQvxqS58qoOWaJAvD5pDtt2LU1GpC3dxx+CZFDqt3DbHu9u5Y/jUlG9e4lBHK18aOdHKZSMEe5ub+eLY8QzJycUwYWddIzdNGMOIwnwMA7bU1PK5SaMZU1aIoZtsOHySK6eOZHxFMcKED/bUcPH0YUwe3A8ZweqtRzlnxlCmjyrHJsu8t/YAC2ZUM3PSIByayvIV+5g1o4o5M6vxuu28vXQnU6ZVsmDhcDIz3Cx5ZQvjJw/krPNHk5fv5/VnNzJ64gDOvngcJf2yefVP6xg6ph/nXjGRgYMLeeGR96kaWcqF105h2Nj+PPfQKioGF3Hx9dMYM3UgTz+8mn4Dcrni89OZOncwTz7yPsWlWVx5wzQWnDuSx/74Pnn5Pj533TQuvHgcDz2xhuxMN5+/eipXd4f57TNrCHid3HzZFHrCMX798ge4HBq3XTCFaCLJL95Yg6YqfGXxFJKGwU/eXYMQgrvmTUUI+NH7a9ANg7unTUVVZH686X3CiQT3jp+OS1P5yc5VdMWjfHX4TAI2Oz7VSXs8yG2Vc8myuXHKdlpinVzbbxE5tgCapNEcbeacgvPJdeQiI9MaP8WUrCvIthcjgM7YIaoCNxCwVSIwCcd3kOP5IjbbCBLoGInNKK6bkOTcT/Q6/TjD/Ogdra0f9kRvmuacv1UmhGgSQuSbptmQGjja/A/u5j+8/Gc3+g8J00yi9/wUM7EbM74ZwzaTUM9/k4hvJh5fh2qbTWfPT4hEPyAc+wCHfTbN3Q/SE1lBMPo+XsdsTnU/Q1t4NYg1ZDhmUNPzNnXhNQgkspxTORFcz4ng+wgk8pzjOBE6wMGedYCgwDGKhmg9u7vWA1DkHEZLvJvNHRsBQZGzimBSZ03rJgAKHf0BB+81b8YEihzFuJUMltRZ+CvfkUeRvYCXTm7DxCTHlsUQXxnPHLN0huZlak4lTxzahmGaeBUn5xQP5dG92zBMA4ekcfXA0Ty8fSu6YSAZEl8cMZ6HNm4hqRvoCYOvTp7Kw2u2ENd1otEE35o/kz8s20gsqdPTHeN7F87loaUbiMSTdHSEKL52EQ+9vJ5QJE5zUzf9bsvgkafW0hOK0Xiqk0HF2Tz86Pt0doU5dayN6gH5PPq7lbS3BTlxoJGh1YU89stlNDd0cmznKUaNKOGxn7xN3YlWDm+qYfTYfjz+46WcONLEwQ1HGD2xnMfvf4Oje+vY+/5+xk0ewBP3v8n+bTXsXrmPcZMrePInS9m1/jA739vDuMkDePbBFWxdfYAd8l7GTarg1afXs2nZXrbKgrHj+/Pu0l1sXL4PSZIYN7ofH2w4zIYVB5AkwdhhpWzbX8va9w8hhGBsVQkH6lpYufYQQsCo/oU0BIO8u+mQ5VIqLaBbj/PWVov5D8vPRdgkXk/hr6rMbPw+By/s3QfAAF8W/bJ8PHNwl9XmzgBj8/N47rjVppmanxn5ZbxSux7DNHHJbubnD+GdpvcwTANFsrMgbwrr297EMHUwNWbmnM2BjqcwsCytozI/T0P3bzHNOEkzSv/AfUSDvwIzjm50I2tPI8Sn41byL+qMfR24Frg/9fe1/+3lP2P0HxJGfAeJ9qtSTF5g2s+hJ/pmWiv2xXRG3kkzerttEa2R1X0Y/Wzqw70+ep9tIicje9KMPqCN5GTkYB8mX8mxSENaZ2ilnIp0kkwx+oCWR100QcywtudTM2iLywSTFqN3K26iuof2eCcADtmOMDKpTzF6TVLwSgUcP83ohaDYVsK+rl5GX+UuY2urxegVITHa1491Db2MfkpmP1ae6GX0s/L68+4Ri9HbFYV5xeW8tfcQJhajX9BvAG9uswYHOTWVRVUDeWPDPgzTxGlTOWtYJW++v5ekYeC0qywaNYi3VuwlkbAY/fyJg3h32R5iMYvRz59WxXtv7bYYvV1l/uxqVry5k0g4jqYpzF04jJWvb7cYvSoz75wRrHp9G5FQitFfMJrVr20jGo4hBMw6fyxrl+4gGrYY/YxzR7J++V5iKV/95IXD2LzmcC+jn1XFts3H04x+5MQB7Njdh9GPKGH3scZeRl+Zx77GtrTuX5rFkZ4uEkmrfnGunwajd87a3ICbbi1JV8Tqh8lwOdG90BJKMXqbDWeWSm1Pd/qYF+Y5Odrdy+hHFnk42N3L6KcVBtjX3cvo5+Rnc6Cnl9HPzCrmaLCX0U8N9KMh3IfRe4fTHXkjdc44KHctwIy+CpggnLgyn0PWhvNJxsfB6N0D88wRD17zkequnfvf/wyjzwSeB0qAk8DFpmm2CyEKgIdN01yUqpd2MwJNwH2maT7yt5b/sG1+xug/JIScA+ZpRm9HUgbRO6DXjqpUcdpXL4Qdm1aZfrIRwo5dGZjKfQMSNlzaABTJxWkm79H6YZN9lhYqflsZLiUzVa4Q0IrwqlmIlM7QCsjQspBSlD5LyyXblp3SEtm2bPLslt3R0hkUOrNSjF6QbQtQ4spCFTICyLZ56efOSvFc8GtOBnh6tUvVGOjLwpbyudtlhYpAZprRK5LEwKysNHMXQlCRk4VNPf10ZzIwv1cbpklFfhaamso/b5gMKMxC6cPoB5Rkn5HrpqJfDiJ1jE3TpLw8J90CAug/ILc3140k6F+Z14fRS/QblI+h9/royyrzMVNtqtk1+lflp5m/zaFSOqggvT2bXaXfoHwkWUrVVymtyEXVUn0UNoXS8mwcTotvq5pCSb8sPB6L0auqTElpNhl+FyLF6EsKM8gJeBACFFmiJC9AXsCDJCxGX5LtpzDgRZYEsiQozvRREvCjpJh8kc9Lmc+PKklWZ7rbQz9vIKUhz+mmnycLNcXoM2wuip05aUbvVuwU2AvSjF6TNLJtxWlGLwsFv1aOfHo8CBIOdWAfHz3ISmVqrmSrjcWnBt0IdEP6SK9/JkzTbDNNc7ZpmhWpv+2p9+tP3+RT+nLTNPNN01RN0ywyTfORD1v+w+LT8XvrfymEXIAS+AN66BGENgbFfSM+dRjh0G9Q1ZE4PbciaxPoDD6ATR1KwHsHDvs8Grt+YTF6/134XedxvPMBHEop/QN3kuu5nP3tv8ah5FOd8WX6+5vY3vo7HEoGo7JuZUhGF2ubH8Ime5macyMRPczyRovRz827jpiR4PV6K9fNOYVXoZsmz560GP1lJRajf6LmZRJGkmvLLEb/+yNvENFj3DxgMS7ZyQMH36IrHuZLgxYQUN24VRut0SBfqZ5NvsOPXVGoC3Vz59DplLozkCXBie5O7hg5hQp/ljWtYHsbt4+ZmM5ls6+5mS+OH8+I/Hx03WBXXSM3ThrDmJIikgmdrTX1fG7aKCYMKCGp62w6dIorpo9kcnUZRtJg3Z4aLpw5nBmjBoAJH2w+wtmzhjJ7UiWyEKz64CDzZg5m3uzB2FWVFcv3MH1mNQvPGo7HbeOd13cwacYgzr5oLIEMF0uf38TYqZWcffkEcvP9vP7EWkZOruDca6dQ3D+bVx9ZzeBx/TnvhumUDy7ixd+9x6BRZVx8y2yGjCvn+QeXUz6kiMtuncuYGdU8/ZvllFXkcdWX5zF10XCefHAFRWWZXPulucy/cCyP/XYleQV+rr91Nuc3dfHIw6vIzPJw000zaesM8fvHV+PzOvnC56bTFYryq2fex+208aXLpxGOJ/jFK++jKQp3XDCNpKHz30vfRxKCuxZNQ0iC+1e8T9IwuGfWNGyqzH+tXU0kmeBrk6bjtmn819YV9MRj3DtqJpkOB17FTlssxFeq55Dr8GCXbbRGO7m+fBEFjgxkIdMSa+H8ovMpsOcjELTGTjE99wry7GWASUf8EIMzbiDTVoUgSTi+i1zvF3HYxhITSfT4FjTXTUhy3id5mX6s8Q8w+n+r+OxG/yFhmjrJ0O8x4psguQvJfhaR0O9JxNaSjG9Hc5xDd+ghItE1xGKbcTkW09zzGF3RD+iObcLvWkxtzwu0Rj5AEhvJdi2kJric+tA6JKFQ4JpDTXAzNcENCCFT5JrJqfAhjgQ3IpDo755EfbSBPd2bEQjKPWNpj/ewo3MzAhjoGUYwabKhzfJQV3qqEdhZ1bwdMKn0DMAtB3i3cQemaTLQU0qhI583andimCYDPAVUe0t4uWYXumlS6spmSnYFzx7aTdLUKXIGOKu4mqf37SZh6GTbPVw5cDhP7txFXNfxqw5uGjGGpzbvIppM4BQad0yx89S6HYTjCRRTkOfy8OSq7YRicYyEQUnAz1PvbKM7HCMWSlKel8nTb2yhsydCqCvK4NJcnn1hI+2dIbpaQwwfWMBzT66npaWb9rouxowo4flH3qexvoPmY62MG9ef5367ktrjLdQfbGTC1IE8/6t3OX6ggZO7TzJ5djXP/Xwph3ee5Ni2o0yeN5gXfvEW+zYe5fDGw0xbNJwXf/kWO1bv58DaA0w/ewSvPvgu29/dzf41B5i+aDiv/uE9tr2zgz2rVKYtHMqSJ9ex7d1d7NYUps0ZzHtv7Wbryn0oisTUmYPYsOEoW1YdQpYlpk0eyM4DdWxYcxhJkpg6tpxDda2s3XAESQimDOtHfU+QVZuOgBBMHlRGtxFj+bYjAEzoVwJ2wdu7D2FiMq6wEJ/PzhsHDmCaJiOz8ynN9vPq0f0YpsHgQB4jcnOsNsWknzuHafmlvFG3Bd00yHVkMzevihXNa9HNJD41g7l5E9jc8Q66mcDe5mNG9iIOdr+EbsSQJTejM66hJfgYhhFBCAWnnEMi+EdMM0gcA8U2ESH+/afg+zTnuvmM0X9IGPEdxNqvTDF5CeznEoy+npovU6DYz6UzsjSVf15gty+iKdzL6D322dT2YfR++yROhHpz3WTaRnIsfCTN5DO1So5H6nvLtVKOR7rTuW0ytDwaozGiKUbvVzNoian0pBi9R3ET1d20pRi9U7YjmZnURU4zehWfnM/RoMXoZSFRaitmT2eK0QvBEFcZm1t6Gf04fz8+qD/N6CWmZ/dnRc0xwGL0c/LLeffgEUwsXjy/tJyluw+mGL3CggEVvLllP6YJDk3lrMGVvLFuL4ZhMfqzR1by5so9JPUUox9XxdvLdhNP6JZvfnIVy97aRSyWxG5XWTCrmuWv7yAasRj9vAVDee+VrUTDcTSbwtxzRrDipc1EQjGL0V84lpUvbCASiiHJEvMuncCqlzYRDcUQkmD2xeNZ8+pmouE4QghmXDiO9W/vJBZJIARMXjyKTe/tI55i6OPnD2PruiMkU4x+1LRKduyqRU8x9yGjy9hzuI+PvrqAffW9jL68XzaHu7tJpHL5FOcHqNd7GX1ehoduLUFn2GL0mW4nul/QHLTGcnjtNpzZGqe6uwBr7EJ+gYsjXVYbK5LEsEIv+7t6Gf30ogz2pBi9LCTm5WWzrw+jn5NTyJEzGH1/6vsw+tHeYXRHXk+dIw7KXQsxo6/waWP0rop8s/qBjzZof8uiH/7T2/tXxmeM/sNCyurD6DUkZQDp7FTYUOX+pBk9NjS1f/rJRmDDpvRDSrFPgYZTKU356kFCxaUWoUnutPZqRTiVFLNHxqvl41b8KUYvE1Bz8KkZKS0R0LLI0AJIiFT++AyybQEseivI0Hzk2jOQhaUzNQ8FjgCKOF3uosgVQBXWaeBV7ZS4A2iS9RkcikqZ159m9JqsUOrr1bKQKA0E0Pr45kuzAthS2gTKsjN6tWlSmhvok3/epCQvkPapG4ZJSUEgPWesaZqUlmSl88UDFJdl9aYfAor7ZacZuyRJFPXPSfvqFUWmqLxXq5pCUXkuZkprNpWiirx0k2p2laIBuek2VW0qheU5aV+/Zlcp7J+dZvSqTaGwLAtbKveNqskUlGTgclt8W1Vl8gsD+FK+ekWRyM/3k+F3phl9fo6XLL8bIUCWBPmZXnJ9lu9eFoK8gIc8nwdZCCQhyPW4KfR4UCQJAeS43BS7fak2hWy7i+JUm57OV1TgzERNnZcOWSPHnoOS6ktShUqGlo+SYvaSkPFppWlGDwK70g+RYvImJrLSH0iVm8anLgXCR3n9u8Vn6OZDQlKK0AIPkgg9hKSORnXfjE8dQjj4axR1BC7vl5FtE+no+TmaOphM713Y7XNp6Pw5drWCwsDd+F3ncbTjFzjUEioC95DnuYw9bQ/gVPIZmnUn/f2NbGn5LXYlgwnZX2Z4sp3VzQ/hkDzMyLuFUDLEWw2PYpMcLCq4nqge55W6J1CEwvlF16AbJn86YTH6q0svAyHzyLGXSBhJbuh/ITbJxq8OvUZUj/GFinPwKE5+sm8pXYkId1QtIFPz4FQ0WqNB/mPIbMs3L8vUhbq4e8QM+nszEUBNTxd3jZ5CVUY2JiaH29v4yrhJDMvNI6nr7G9u4dZJ4xlVVEA8kWR3XRM3Th3LhP7FxOIJdtTUc+2MMUwZVEY8nmTLwVNcNmsEM0cMIBHX2bi7hvNnD2POhEGYusnazUdZNHsoC2YNRsLk/dUHmTN3MIsWjUCTZVa+vZtpc6pZfPE4HA6V5a9uY8KsQZx7zWT8ASdLn17P2BmDOO+G6WTn+3j9j6sZOaWS82+ZRWF5Dq/+bjnV4wdw0W3zKB9SxAsPvM2g0f257M5FDJ5YwXM/f5v+Q4u48q6zGTN7CE/9dClllflce/dipiwexZM/f5uCsmyuv3cxcy+ZwGMPvEtuYYAb71rIefWdPPKb98jM9nDzl+fS0hbk9w+vxOt1cNstc+gMRnjg8VW4nBq3f24m4ViCnz2/Gk2V+Y9LZ5A0DH702iqEENxz3gyQ4L/eWYVumnxt7nRsmsL33l9BJJnkG1Nm4LXb+O7m5XTHY3x9zEyyHS5+qLxNeyzEXUPmUuD0ogqF1lgXNw1YSLEzCwlBc6yVi4vPo9hZAJi0xmqZmXsFBY7+GGaCzvgRhmRcT459KBAjHN9Fnu9WHLaJxIhZjN59C5Jc8AlepR9fmKnO2E9jfHaj/5AwTYNk+CnM+Gb05FFk56VEwk+RiG8kmTyI3Xk5XeHnCMU2Eknsw+u6kvbgy/TENhBO7CbTfRmNwTfpjG6kO7aTAvdF1AZX0hLZhCxslHrP4URoG7XhrUhCocK7kFPhIxwPWnqQbzYN0SYOdm9HEhJD/VNpiwfZ2bUbAQz3TySUNNjWac0vOjowCoGdtS17MDEZk3EIt+JnZfNeDNNkVMZBCuy5vFu/j6SpMypwgGpfCUtO7iNh6AwLHGRidjmvHdtPTE+yJHCAhUWDePXQAaLJJK/79mOrUHhl737CiQSvuPcR0By8snMfwVicl1x7yXO5eWXzXrojMV602emX4ee19XvpCEZwKbuozMvi1VW7aOsKoyIxtDSfN97dRXNbEBE3GVVZzBtv7qChsYtkOMH4kWW8+cIWak+1E+mMMGliBW8+s4ETR5rpae1hyqxqlj7xAUf21tFe287MRcN585FVHNh2nJbjTcw+fwxvPrSCvWsP0nConrmXTmDJH5axa8UeTu6uYd4VE3nr4RXsXrGHmh3HmX/VZN55bBU739vJkS2HWHDlZJY/vZZdK/dwePMR5l8+iVUvbmLnyr0cdNqYf9FY3n97NzvfP4hmU5l3zii2bDrK9nWHUVWZuQuHsWd/Pds2HEOWJebPGsLRhja2bDmOJEvMn1xFQ3cP67YfQxKCeaMHEjQSrNltWVjnDhmAqQlW7juGicnM8n54vXbePXQU3TSZVlxDcaaPpccOkzQNJuQcY2huNktPHSBh6IwIHGJyfhHLGncRN5JUePYwO6+SNa2biZtxClu3MDt3DNs73iduRAloq/HINo50LyVhhHDIS/DKflpCL1qe+eDzuORSEuHnMI12EmEvim06Qnw6bpD/h0n2PxWfMfoPCSO+k1j7FX0Y/XkEo6+lGL2EYj+XtvBSTCxG77SfRXN4RXqOWI99LrXhjX0Y/RROhHb2YfSjOBI+mtZZtkEcC9dhpHUZNaGu9JywmVo+dbE4Ed1i9AE1g/a4QneyBwCv4iGcdNMa6wQsRi+TRW2kFQCbpOKX8znS0wRYDL7MXsLuDmtqAFlIDHWXsan5VLp8YqAfa2p7Gf2M3P68d8xi9JosM6+gP+8c6MPo+w1g6Y4DaUa/qHIgb27aj2GaODSVs4dW8saaPeinGf2oKpa8t5tk0sBhVzlrYhVvvbOLeFzH4VBZOK2Kd9/YQSyaxOFQmTd3CMtf2drL6M8aznvPb7R89HaFeeeP5r3n1hMJxVA1mXmXTGD5M2uJhmLIisS8Kyaz4pkPiKaY/ZwrJ7P6+Y3Ewhazn3npRNa+vpVYxMqFM+2C8Wx4dzeJWBIhYMLCkWxZczDN6MfMqmb7tlNpRj90XH92H27CSPnqBw0pZH9dR9pnXz4gh6Nd3cRTy5cUBqjTI4SiVhvnZXrptiXoDFmMPsvjJOETNPf0YfS5Nk52nWb0KvmFTg53tqXbaGixj72djak2FUwvymR3V026jecX5LCne39Ky8zPLeJQz5aUVpieUU5taDVgIgsbY3wj6Iq8DphIwsFA90LMyMuAkWL0zyNrfdKDfALxcTB6Z0WBOeBnn/9IdXef873PGP2nJqSMMxm9XNLnK19D7jNXpkBDVYoh9WQj0NCUwl5fPRoOOb9PDhEVh5KHKp3OIaLgVnOxyx5r08h4lCycipUbRyDhVTPwKD5E6p9PDeBTvX20jwytt9yvesiyeVPEHvyai1y7FznN5B3kOTwoKe1SNAqcHtQUI7crCgVub5rZK5JMgceTZvSSEBT4vGnmDlDo96SZvWFCYYYX9TSDN03yM3u1bpjkZ3tR5F5Gn5fr62X0hkl+fqCPjx7yi3pzNwkB+cUZ6YRhkpDILcns9dUrMnmlWen884qmkFeWndaqppBXmp1uU9Wmklfay/w1m0peSVZ6fxRNIac4Azk1DkDVFLILA2g2i28rqkxOgR+HI6UVmew8H+4Us5dliexsL96Uz16WBFkZHvwpLQlBtt9FpseJSH2+LK+LbLeV314Sgiy3kxyXG1lYRyXD6SDP6Um3acDmIM/hTbepW7GRY/ehpBi9TVLJtAXSjF4RCj41C/k0o0fGreQj9clGaVMKESkmb2Iiy0VAakYp00BIGXwawjQte+VHef27xWfo5kNCUopR/T8jGXoYSR2F6rkVr1ZNuOfXKOpw3N47kG3jae/+OZpaTZbvqzjss6jv/Bl2dQDF/q/hc57D0Y6f41BKqMi8l1zPpexp+yUOJY/hWffQ31/PxpYHccgBJuXewfCMNlY2/R677GF23m2EkkGW1D+CJtlZXHgjUT3O87UWo7+k+FqShsHjJ54B4NrSyxEo/PbIiyTNJLcMuAhNsvGzA68Q0ePcXnkOHsXFD/e8SVc8wlcHLyTb5uW729+mNRbi3mFzKHIFEEJQH+rm3lEzqfBloRsGJ7u7+Oq4KQzOyiWh6xxtb+f2iZMYnV9ANJHkQHMrt04Zz/jSYsKxBHvrmrhxxjimVJQRjMbZdbyBa2aOZuawciKRONsO1XLJrJHMG1dJNJJg8+4TnDtnGItmDCYZT7J+01EWzhvG2QuGYeoGH6w6wKx5QzjvorHIwKq39zBlTjXnXzMZmyaz/OWtjJ9dzYU3zcTrc/DWk2sZNb2KC2+dS0aul9cfWsGIqYO46MsLyC/N4uVfv83gCRVcdtdi+g8p4fmfvsnAMf254mvnUT1xIE//+DXKh5Zw9X9ewKi5w3jy/tcoHVTAdd+6gCnnjuGJH79JQVk2N953AXMvb+LRn7xFTqGfL/znuZxzqp2Hf/kugSwPt969iJaWHn772/fweh18+fb5dPSEeeCRlTgdGnfeNIdgLM5Pn1qJpsrcffUs4rrO/S+tRAjB1y6aBRJ8b4k13eI3Fs3EblO4b8V7RJJJvjVjJl6HjW+tW0Z3Isa3xs8ix+niOzveoj0WTrWpD1kIWmLdfLFiEWWuLEzTpDnWymUl59PPVYRh6rTGapmdewXFzgHoZpTO+FGGZdxAnnMEphkiEt9Dvu9WHPapRI0gemI7NvctSMqnY+IR+PTaKz+uiUcWAL/Emm7pYdM07/+z8hlY+RiOp9562TTN734c2/7fDNM0MKJLMBM70PUmFNcNxCJLSCa2Yei16K4bCUbeIhrfSiJZQ8BzEx2R9+iO7yCcPE6O90Zawmtoj+5AkY5S7PscjeENNEd3oUhHKE9cQV14B42RnSiSja74hdRFjnMytBdZqIwInKQp1sLh4D5kITMueor2eJD93fuRENRmniScNNjRYaUFnpp5EiFsbO08YM3J2n0Ct+JjXcsRdFNnV8dJCuxZrGk6TNzQ2dpWQ6WnkJX1R4jqSdY11TA+C5afOko4GWdN/XHsksqy40cJxmOsPHGcgOZg2aGjdEWjrDhylEKXl2X7j9AejrD8wBH6BwIs33WElp4Q7+46TFVeNu9tPUxjZ5B3fYcYXprPik2HqGvpZrnrIOOqilm59iCn6jtw2zSmjC5n1cr91NS0YpNlpk8ayKp3dnP0UBOSaTJ77hBWv7mTQ7tqMaIJ5p87ilWvbuXg1mPEghEWXjaBVS9u4MCmwwTbu1l8/TRWPb+OA+sP0tXYwTk3zWL182vZv3Y/bSdbOP+2+bz/wjr2fbCPxmMNXHDbfNa+spH9a/bRcLCOC7+0gPVvbGXfB/up3V/LebfMYdOy3exbf5gTe2s578aZbFu9n70bDnPMZeO8ayazY9Nx9mw6jt2uUnfJePYfamD3thNomszJc0dT09jOzp0nkRWJ4/NbaA6G2brnJLIkcXh6C0E9yYaDpxDA/pNNYBOsO3IC0zTZXduIx2tjzfET6IbBtrp6CjO9rDxVQ8LQ2dhQy+CcLFY3HCGmJ9nYfAIzt5A1LQeI6gk2tR3GqcDm9t1E9Cg7OvYSUG3s7dpERA9yoHsLmZqXU6HVxPROToVWk2kroDPyNgm9hY7wW3jUQSRjSzH1RhKRN1Ds885wRv07x/9hkv1PxT/N6IXlJzwEzMWaG3YzcLlpmvv61JkB3GWa5tn/yLo/eUa/i1j75SlGL4P9fILRV/ow+vNoiyxJ++id9rNpCK9MMXqB1z6HU6FeRp9hn8Lx8M4+TH40x8KH+ugqjoQaMLDyqmTb+nEs3EUiNZ9nllZAXTRGRLfynmSombTGVboSFqP3qR6iuouWWAcAbsWBMLI4FbYYvV1SyVTzONTdy+j72UvY2d7L6Ed6y9jQ1MvoJwf6sfpUDWDx31m5/Xnv6DFMUoy+eADv7LNy29gUhYX9BrB0x0EM08SuKiyuquT1jfswDIvRLx6WYvS6icOmsnhMFUuW7SaRtHzzZ0+u5q2lO4nHLSa/cOZg3nltO7FoArtDY8G8ISx7cQvRSBybQ2Xe4hEsf87yyWt2lXkXjWH5Ux+kGL3C/MsnsuxP71uMXpVZcPVUlv9ptcXoFYm5V09j5TPriIUtZj/7yim8/9JG4pE4QhJMu3gi65fuSDF6waRzRrN59UGScavNxs4ewrYtx9OMfvikCnbvb0wz+arhxeyrbU/rARW5HOnqJp5avqQog3o9QiiVDz8/20unLUlH0OqHyfK60H2Cpm5rrITPYceZq3Gi02L0TlUlv9DNwY7WVBvJDC/1srujId2m04sz2dlZk9YLCnPZ3dXL6BfkFnGwZwsWk1eYlVmRnrBeFhpjfaPojLwOGEjCzkD3WSlGr4Nw4Mp8EVkb+lEvq/+V+DgYvX1AoVn245s/Ut2DF973/x2jHwccMU3zmGmaceBZrBlQ/v1D8vVh9Io11DutVWQ5rzf1DRqqnN+H0atock4fX72KTc5BTvvqFexKJorUm/fbIWdgk08zewmn4schu1Ja4FZ8uFIaBG7Vi1txp5m8R3HjU10W3wXcipOA5kZKMW6P6iBTcyOntFu1k2V3pXmuQ1bJdrjSvnpNlsl2utLMXpEksl3u9Byvlq/bldZgTZyhyr0++CyfK60N0yQ74E4zedM0yc5wI8u9uWyystzpOVtNA7JyvL2uZdMkK8/H6YMuEGQX+M/IdZNVEOjD6CWyCjJ6Gb0ik1mYkS5XVIXsosw0k1dUmcyCjPRjnaIqZBdkpJ9WFVUmI8+PnNp/RZMJ5PlQU7l8FEUmkO1J++plRSKQ5caZyoUjy4JAhhu3y57e34DPiTelhYCA24nPaU8z+oDbQcDpSLep32knw+FMX7g+u51MuxM5tY9eTSPT7k4ze6eiWm1+uk0lBb/qTTN7Rch41ABy+jyVcChZSJxm9AJNyUWktAlIUh5pGGCaCMnHpyXMj/j6d4uPA90UAqf66Fpg/F+pN1EIsROox3q63/vXVpZK4H8TQElJycewe//zkJRSVN8PLUavjUT1fAmPUkk4+GtUdShu738gaWNp7/4ZmjqILN/d2OwzqO38GQ61PyWBr+FzLuZw+89wqEVUZt1LrucidrX9AoeSy+jseyn31bKh5Vc45Aym5H6V4Yk23mv8LTbZzYL82+lJdvNa3cNokp0Li75AWI/y9MnHUITClaXXkzAMHjr2NAA39r8CgcIDh58jaSS5beAl2CQ79+99mYge566q8/CpLr6z8zW6ExHuHXIWuXYf39yyhNZYiK+PmEs/dyZJw6Ah3MM3Rs+i0p9NNJnkVE8X94yfxrCcPMKJOMfaO7hj8iTGFRXRHY1xqLmV26ZNYHK/UrrCUfbWNnPTzLHMrC6nOxRjV00D18waxbxRlXQHo+w4VMfFc0Zw1qRqgsEoW3ad5Nx5wzh33nCi4TgbNx5l/ryhXHD+GBLRBOtWH2Tm3CFcfNVESOqsfns3k+cM5qIbZyALwXsvb2b87GouuXUuTofK209+wKgZ1Vxyx0L82W5e/91yhk8dxGVfPYfc4gxe/uVSqicM5IqvnU9pVRHP/ug1KseWc/W3LqJqfAVP/eAl+g8r5drvXMLI2UN5/PsvU1pZwA3fvYTJ547lsR+8SkG/HG767kXMuXwSj/zwdbILAnzxuxeyuKaVP/z3UgKZHm7/1nk0NnXx4APL8Hjt3PnVs2jvDvOL3y/H4dD46q3zCcbi/Pix5aiqwtevn0vM0Pn+c8sRQvCtS+eADPe9thzdNLlv8WzsNoWvL1tGNJHkO3Nm43fYufeDt+mOx/nOxNnku918c+ubtMfCfH3EPMrcfox9Ji2xbr408CwGeHJIGklaYm1cXno+Fe4SEkaE1lg9c/OupMxVSdLooTN+jOGZN1LgGI1hdBKO7yXfextO5yyiZgd6fAea+2Yk5ZO9Tj+2MD/LdfNh8deOzJ9/6W0DSk3TDAohFgGvAhV/bWWmaf4B+ANY6OZj2L//cZimiRH/ADO5D8OMYOqdJOIfoCf3YprdGEYHkdhaYok96EYbutFGT2wT4cQeEkYTCb2Fzuh2euL7iOoNxJLNtEd30xHbTzBRRzjZRHP0IE2Rw6iSk2CyicZoDXXRwyjCRmeikeZoKyfDx5CFQmu8kY54iGPB40hCoinaSEQ3OBy0uj7qIk0INPZ21WBgcCLUiFP2srPjJAkzyZGeBnLtmWxprSVqJNjb2UDSA5taThFMxNnd1ohNaGxsOEV3PMb2lnr8qp2N9bW0R8Jsbawj3+Vhw8laWkIhNtfWUR7IYOPxUzR2B9lYc4rqnBw2HTlFXXs3G4+cYlRpAZsOnORkSwcbD5xkYmUpm/ecpKa+jU27TzB9RDlbdpzg6IkWNm2vYfakSrZuruHokWY2B46zYP4wtq07yvEDDXjdds6+YDRbPzjM8f31OBwa5141iW2r93N8zylUReKCm2ax9b29HNt5AgyTS748n63v7OTY9uPosQTBu89h67LdHNleQzQYo7s9yPb3dnF0xzHC3SG623rYsXIPh7cdp6u1h66WbnZ9cICj22voaOyko7mLvRsOc3h7DS2n2mhv7OTAtuMc2XmKxhNttDZ0cmh3LYf31uF022lu6OTI4SYO7avH7tBobOjiRFMHBw41oqkyDY2dNAfD7D3aiCxJnGrsIGQk2H28ESGgprkDVMHOk40YpsnR5jZcHhvbautJGgYHmlsoyPCwuameaDLJvrZmdCnJ5pZThJJx9nQ0Yldge8dxgsko+7pOkWHT2NdzmJ5EkEM9x8izezgW3EMw2UVNaB959hwaItsJJ1toDG8j29aP7ug64nodPbF1+GwjSMbWYuo16LEPMB3nfGoY/b/l4/pHiI+D0U8Evm2a5vyU/hqAaZo//JBlaoAxpmm2fti6P3FGn9hDrO2SFJNXwHE+wfDLQASQUe0X0Bp+LZXbRsJlX0x9+L0Uo5fw2udyKrQ+xegFmfapHAvvwDzN4O1jORTsZfQ5tmoOR+rQzWRK9+d4uCs9R2y2rZC6SJywbnmqM7Us2uMynQkrN7lf9RJJummKWVlL3YoTxcziRKgFsIa/Z8j5HEjlKlclmQGOYra31QGp/PPeMtY1nkzrqZn9WXXyOCYWo5+TN4BlR46kGf3CkgG8tfcQBmBTZM4ur2TJtv3opxl9dSVvbNiHbpg4NIVzRlTxxiort43DpnLO+GrefGdXmtEvnjqYJW/sSDP6RbMG884r21KMXmXhWcN557lNaUa/4LxRvPOU5ZPX7CoLLh3PO49bDF61KSy8egrv/HEF0VAMRZNZcO0M3n18VcpXLzP/c9N576k1vYz+qmmsfmED8YiVv37GZZNZ+8a2NKOfcv5YNizfSzKhIwSMnTeMbRtr0FO5a0ZMGciufQ1pJl89soT9J9tJphh+RWUeR7q6iaXy25cVZ1KrRwiGrX6YgmwfXfYk7T1WP0yOz0XSJ9HYZfXD+J12HLk2ajo6AXBpKvlFHg60W21sk2WGlvjZlep3UYTEzNJMtndYDwOykFhUmMfOrn0pLbMwt5iDPZst66RQmJlVyclgL6Mf7x9NZ/gVehn9YszIi4AOOHBlv4ysDv4Hr66PNz4WRl9eaBbf/4WPVPfIJf/5/x2j3wxUCCH6CSE04DKsGVDSIYTIE6mvfCHEuNR22z6Gbf/vhnD16YaXkaQser/yFSSpj6cbBSk1/6ulZVQ5kB4xaGk/UtpXL6NJ3nQecIGETfagpn32AofswSbZ01twyC7sct9yJw65N0+4Q3bgUhxp37lTtuFR7OmfXA5Zw6vZ08zeIav4NHua72qyjN/mSDN7VZLw2x0oKUYvCQm/w57WAgg4HWnmDuB32ZH7MPqA29GbX96EgKevNvF7HelcMqZp4vM5ehm9Cf4MF30fFn0BV/r/AoEvo7eNJEngy3SfkfvGm+lJM3pJlvFme9NaViR8Wd507htZlfFne9Lrk1UZb6Y7/bQqqzKeDFc6P72syHgDrnQ+fVmR8Aac6Vw4sizh8TqwpXz2kiTweBw4UgxfCHC7bbjsWlp7XDbcpzXgdtjw2LV0G7ptGl6bHSm1Ty5Vw9enTZ2Kil9zpPthbLKCV3Uipy51Vci4FVeayUtIuGQPUprRC+ySL32eWueBvw+jN5GkDHphgIkQvW3y7xwmYBjiI73+3eKfRjemaSaFELcB72DZK/9omuZeIcQtqfLfARcBXxBCJLEehy8z/y8PyU2FpPRD8X4bPfwIkjoM1XM7bqWcSPDXKOoQPN67EdrIlI++khzf17HZplPX9VNsSj9KAl/H61jE4faf4lAKGZT5NXLch9jZ9jOcSi6jsu+lzHeKdc2/wiH7mZ5/D8PjLbzb+CA2ycXZhXfSnejm5dqH0CQblxR/kbAe408nHkUWCteW3UDCMPj90ScBuLn8KgQqPzv4DElT5/aBl2KX7Hx/z4tE9Dj3VJ+PT3PzzW2v0p2I8s1hi8h3+Ll74xu0xcL858h59PdkEtETNIZ6+ObYWQzOyKUnHqO2p4t7JkxjTF4hXdEoxzs6uHPKZCYWl9AejnCouY3bpo1nRkV/2nvC7K9v5vMzxzF/aAVt3WH21DRy9ezRnDWuivbOMDsP1XHRnBGcN3MYnZ1htu0+yeI5w7h48Wh6uiJs3nyc+fOGcNllE4gGY6xffZDpcwdz6eenkYwmWPPObibOrubSL84G3WDlK1sYM7Oay76yAE2TeedPHzBiehWXf3UxHp+dN36/nKGTB3Hl184jK9/Pyw+8RdW4AVz1rYsoHlTAcz96lYpR/bn2O5cycMwAnvz+S/QbUsL1P7icETOH8sT3XqJoYD6f/8HlTFg8hse++zJ5Zdnc/F+XMuuyWh7+wWtkF/j54vcu4qyjLfzuR0sIZLm5/dvn09DQxa9//g5er527vn42rZ0hfv7bZTgdGvfcvpCeaJz7H12Gqsh888Z5xAyd7z5tMfpvXzEXoQi++fK76KbBd86di92ucM/b7xJNJvne3NkEXA7uWv0WPYkY3580l3yPm3s2v05HLMx/jpxPf0+AmJ6gLd7DlweeRaU3j4gepTXezpWlF1DpKSNiBGmLNTA3/0oGuKuJGZ10xWsYnnE9xa4J6EYL4cQB8j1fxOlaQMRowUjsRHPdjKSUfbIX6scVJvAZo//bYZrmUmDpn733uz7//zXw649jW//KME0TM7kbM1mDgQxmiER8N/HEMXTTxGX2EEvsJZ48jkkC3egkHD9ANHEc3YigG10E40cIJ2tImkHiRgdd8Rq64qeIJnuI6R10xk/SFT9JRGonkmynI15HW+wUqmQnmOygLd5Gc6wORah0JzvpjIdoiNQjCZnOeAcR3eRk2EIxVuoDlWOhRgzToCnajlN2czTYRNxIUhdpI2HAoe5mwnqcE6F2VKFyoKuFnkSU4z3t+FUH+9ub6YhFOdLVRr7Ty/62FlrDIQ63tzHAl8m+5haagkEOtrQyJDuX/fXN1HV1s7+xhbElReyvb+Zkayf765qZMrCM/aeaOdnSyb6TTcwcVs7+miZONXWy/3gTCybGOXi0ibqGTg4cbSQSiXP4UBP19R0cONBANJLg4P4G6uo6OLS/gVgswaG9ddSfbOPw3jpi0QSHd5+i/kQbR/acIhKOc3j7CeprWnD7ncTCMQ5vq6H+WAsOt4NIMMqR7cdpONqIqilEeiIc3nacuiNNCEkm3B3h6M4T1B+1Ug2HOsMc33uKuqNNxGMJejqCnDhQT11NK5Fwgp72ECePNFFX00JPd4Su9hC1NS3UnmilsyNEZ3uIutp2Tta24XCotLcHqW/uoqa2HZtNoa0jSFsowvH6dhRZoqUjSMTQOdbYhhCCxs4eUAWHW9owTJP6zm5cbo1Dra0kdJ3ari4SQudgRwuRZJKa7g5UVXCwq5lgIkZNTzt+m8bRYCNdiTAnQi0UON2cDNfRlejmVLieEkcmDZHjdCc7aIqepMRRTGfsIKFEI53xwxQ4BhOO7yWWPEkksRfTmIKR2IORrEFP7MI0L/7UMPr/+4+f/7P4LNfNh4SR2Ees9SKsHyEK2C+iK/IcmFFAxua4mLbwKylGL+NynEt96N00o/c55nMyuLaX0TumcyR4mtELcuxjORI6kPbN59qGcChSi56aIzbPPoBjoc70HLG5tiJqI3FCuuWpztKyaY0pdCQsT3VA9RHV3TSk5oj1Kk40stJzxDplG5lKfnqOWE2SqXCWnDFH7Fhff9Y21GBi2SmnZ5az4sSxNKOfV1DBu4cOY2ChnrNLK1iy5xCGaWJTZBYPrOSNrfvRDYvRnzukitfX7yWpG9g1hQtGVvPqyt1pRn/+xMG89vZOEqn88+dMH8KS17en888vnjeUpS9tTTP6s84ewdvPbCAaiVvM/sIxvPWnNURDcWx2lYWXT+CtR1elGf1Z10zlrUcsRq9qCouun8Hbj65I++oXXj+Tdx9fTSwcR1Yk5l4znZXPriUeTSDJEjMvn8ya17aSiCWRJMGU88exYfk+i9FLgvHzh7F53VH0pMXsR0ytZOee+j756UvZc7ItnRunsiqfw+3dRFP55/uXZlGXDNMdshh9UY6fLluC1m6L0ef63ST9EvWdVj9MhsuBM8fGsfbUWAlNo6DYw742q41tssLwEj872q1+F1WSmFWSxdaOY+k2XlRUwM7OvSkmL3NWXin7ujdy2kc/O2sQJ4PLsZi8xnj/eDrClm9eCDuD3OdhRJ4HkpaPPutVZLXqn7jS/vn4OBi9rX+hWfj9Wz9S3eNXfuP/O0b/6Q1ho5fJSwjJcwazF8Ldp7KMJLnpy+gV0ct3BTKycPVhoRKK5OjDQi0ti17/sio50nnCAVTJjir1yUEi27DJWh+t/YV2yL18V5MUHLJ6hnYqWprvqpKMS1XT/FcREi5VS3uwJSFwa2o69wuAS9OQpd6nObdNQxK9jN5j19LrM01wOW19GLyJ02n7s3LtjKdDl9t2BqN3urU+Pi+B02XrzU8vBE6P/QxG7/A40lrIwtJpZi/hcJ+pnT5neluSLOH09PaBSIqEw21DpPZfkgR2ly09DkCSJJwuWzq/viQJHA4NNZUbRwhw2DU0rVfbbSqa2pvP32FXsam9bWzXVBxq7w9vu6LgUHrb0K4oOBU13YY2WcalaukLWxUyDsWWLpeFhEOypftxJASa5EDidL+LQJNcSPT2u8iSC5HWZuq8T23BNPvMH/vvHh8tz82/owXzs1w3HxKSUo7ivRc9lGL03jvxKqWEen6Fog7G67sHSRua8tEPJNv3dVRtMnVdP0kx+m/gss/jSMdPsSsFVGV9nRz3fra3/gyHks2YnHvp56thbdMvsSt+ZuTfzbB4E283/Bq77ObsgjvoSnTx4qnfo8k2Liv5MuFklMdqHkERMtf1u4m4YfKbw48DcGvFtQgUfrT/KZKmzl2DLscuOfj27ueI6gm+Nvh8AqqXe7a+RHciyn3Dz6bAmcEd61+lPRbm26PmU+HNpjseozHcw7fGzWZYZj7t0Qi1Pd18beI0xucX0RwKc6KjkzunTGJ6WT+aeoIcaWnn1ukTmDdoAA2dQQ7Wt/D5mWM5e2QV9e097DvRxJWzRnLh5KE0tXaz63ADF80ezqXzRtLS3M2OvbWcPWcIV14wno7WEFu2HmfunMFcec0UejrCbPzgMFNnV3HlzTOJ9kRZ++5eJsyq4vIvzSEZS7Dqta2Mnl7FFXcuQjJN3n1mHcOnVHLVvefgcKoseWgFgycO5KpvXoA/28Mrv3qLyjHlXHPfxeT3z+X5H79G+cgyPvedS+g/tISn/+sVygYXcf33L2PI1Cqe+O5LFFbkceMPLmfcwlE8+v1XySvJ5ObvXcyMi07y0PdfIyvfzxe/cyE1R5t58Idv4s908+VvnUddQycP/OxtPB47d917Ni2dIf771+/gdGh8886z6I7G+MEj76IqMt++eSFRI8l9T76LEPC9qxeADPe+9A66afCD8+fhsKv8x9K3iSYT/HD+PDJcDm5f9SY98Tg/nDKPQq+HOze8Skc8zLdHLWCAN5P7ks/QFgvylUFnU+XNpycZojXeztWlF1Lt7U8o2UlbvIF5eVdR6RlKJNlMV6KG4Rk3UuKeQlKvI5I4SL73VpzOc4gYdeiJ3WiuG5GVfp/wlfoxxv9dwPFPxWc3+g8J0zQx9VpMow1DrwMzhp6sxTBa0fU6MKPEk3XE9VYQLkwzQlxvIKG3ItDQzTAxo4WI3oYhZJJGmEiylYjeholB0ggRTrYT1tvRzThxI0Qo2Uko2UHCiBIzQgST3fQkO1AMjageIpiM0JXoQEImnAwRNUzaU+gmmAwBKm3xLpKmQXciRFKGlmg3MSNBZzyMIjSaoj2EkjHaYiG8qovGSDdd8Sgt0SD5Dh/1oW7aomGawyHC3jj1wW5awyGaQkHCiST13d20hkI09gSJJBLUdfXQGg5T391DNJGkvrOb1lCY+s5u4skkDR3dtAXDNHT0EE/q1Ld109YTor6ti3hCp6Gtm/aeEPUt3SSTOo2t3XR0R6hv7iKZNGhs7KKjK0xTYxfJuE5jQxcd3WEaG7tIJgya6jvo7IzQ1NBJIp6gqa6Dro4wLQ2dxGNJmmrb6ewM09zQSTwap/lUO13tYVrqOknEErTUttHVEaKlroN4JEFLfSedHWFaGrqIheO0NnTR2RlBa+whGo7R1tRFR3sIWVOIReK0tfTQ0RnBlGWikThtrUHaO8IkDIiE43R0hmnrDBGJJwmF43R0hWntCmGLxAiGY3SFI7R0hVBkie5wlIiRpCkYRCDoCkdBhaZgEN006YxESQiDxlAPcV2nPRxGVgUN4R7CiQStkRA+h0ZTtIvuRJTWaIgCl4uWWCdd8RBtsW5iRoCORBs9yS7a4x3EjSidiRaCyU66E20kzSihZCPRZDuhZCOGGSWerCehtxJL1gFRhFGPZLaBUfeJXqMfa5hg/hs6aj5KfMboPySMxH5ibRemfPQqOC6mK/QMEAUUbI5LaAm9lGb0bscFNITfSjN6v2Mhx4MfpBl9lmMmx4JbU0xekGsfz+Hwfow0kx/GofCp9Byx+fYKjoU6iRrhVHkJtZEYwVT++RxbDq0xJT1HbKbmJ6K7qU/ln/epLmxkcTRo5bZxKTaylAL2dFoea5ukMNBVwuYWa2CzKsmM8/VnTX2vb35G1gCW1xxN6wWFA3n70GEM00STZRb3q+TN3QfQU4z+vMoqXt2yF90wsSkKFw6r5pV1e9KM/uIxQ3h5Rco3b1O5cNIQXn1rJ/FEEodd5fwZQ3k9xegddpVz5w9jyYtbiKYY/eLFI1mSZvQaZ184hiVPrCEatnz1Z18+gSWPrk776s+6ZgpLH15JNJxi9tfNYOnDK4iFLV/9wutn8O5jq4lF4siqzLxrpvHes+stRq9IzL5sMqtPM3pZYtr5Y1j77h6ScYvRT1gwjM3rj6d89YJRUweyfVcdyRSzHzq6jD0nW9K5baqqCjjU3kEkarV5eVk2dckwXUFrrERJXoBOW4KWLmusRH7AQ9InUdthfZlnupy4c2wcabfGSnhtNgoL3exus9rYLiuMLA2wra023aZzSrPZ2m6NfVCEzFlFBezo3J1m9Ityy9nXvT7to5+TVc3J4DJMdCShMcE/kfbwS0ASIexUeS6AyPNAAnDgyHoNSa38Zy+3fyo+Fkbfr8jM/86XPlLdE9fe+xmj//SE2ofJi9S8mX211qeuhJDO1JLoZaGW1tK5cEAgCRVBX62kGT4IZKGmeTdYg1tk0YedCuXPtJzOYQLWRf3nWpXk9B7JkoTWR1u8Vkrvs0CgyXKaoQtxpgarQ1b0Yeya0rfcxKYqZzB4VZHTzN00TVS1r7ZyvKfzzwOaduaPTlWT+ygT5QwtUDTlDOuEalMxT+fGEQLV1lsuhEDT1F6mLwSavZePS6frn167JFDU3v2ThEBVld5+GAGaTUmPCwCBokjpPg0hrHw5p8cZCGEdD7lPn4cqS+lxCgCKLP+Zls7ILSRLEkqfNlQkCU1SzmDyqpDP2GdFKGe0sSyUM85Da2xHbxsLofU5j02EsPUpN0F8isDApzTZzaeohT7+kNQBKJ6vkAw9iqQORvP8Bx65gFDPr1HUary+r4FaRVv3z9GUCnJ9X0fTxlPb9RPsSiklgW/gtM/mUPtPsSv5VGd+jWzXHra3/gy7nMWYnLspi9Wwpunn2GUf0/PuZki8kbcaHsAmuTir4A46E128cOpBVMnGZSVfIpiM8ejxPyALmc/3/wJxw+SBQ48C8OWB1wEKP9z3J5Kmwd2DrsAhO/jmzmeJ6nG+OeQiMjQvd25+gZ5klO8MX0yRM5Pb1r1ERyzCd0YvoNKXQ+vK12iOBLlv3GxGZhXQGApSH+zh6xOnM6mwhPruHk52dnLnlMnMLi+ntrOLY60dfHHaeM6qruRkayeHG1u5YfpYLhg7mJPNHew/1cyVM0Zy2fQR1DZ1sudoAxfMHMY1i8bS0NDFzv21LJo5hM9dMpGWxm62bq9h9sxqrr5uKh0tPWxad4QpMwZx9S0z6ekIsX7FfsZNq+SqL80l1hPl/SU7GDl5IFfduRAjkeS95zcydFIFV929GEUWvPXYaqrGDeDqr5+P2+vgtQffpWJkP6751oVkFWXw4s+W0G9oCdfedzElVUU8/aPXKaks4PrvXMKg8RX86b9eo6B/Djd+72JGzRnCoz94ndyiADd/90KmbjvJH374Bpk5Xr74rfM4cqiR39y/BH/AxVf+81xO1bXz85+9jdtj56t3L6K5Pcj9v34bh0PjG7cvoisa5bsPv4OqyHzvlkVETZ1vPPk2Avjh1QtBEdz14lvopsmPLpiPw65y+5IlxHSdH82bR4bbwW0r3yCYiHH/lAUUe73cvuFFOuMRvjNqEQN9mXxz15N0xIPcPnAxQwJFdCY6aY93cGXJxQz1D6A72Up7vIl5uVdS7RtJKFlPd/wEwzJvoMQzk0SyhkjyEPneL+JwXURMr8FI7EVxfR5JKf9Er9OPNf4Nb+IfJT57ov97YYQsO6UZBnRMM4RpxjDNEJDEMEIYZhTDDGGio5thDDOGbqS0EUU3Y+hmBIMkSSOKbsRIpnQiVZ40oykdI2nESZoxdDNJ0kwQN+IkjJQ2LB034uhmkoSRJGbEiRlxEkaSpKETNRLEdEsnDJ2oHidmJIgbCRKGTsyIEzcSxFL6dHlUT5A0DMJ6nKieIJxMkDQNIskEMT1pacMgnIwTMyytGwbhRIKoniQST6CbJpFEqn4igW6YhONWeTiRtLzp8TgRPUkonsAwDELxBFFdJxRLYJip+oZOOJbANE1CsQTRVD1dN4lEk8SS1l/TMIjEdOKGIBLXMQyTSFQnbgoiMR1DN4jGdBKmRDRuYOgGkWiSOBLRpIGum0RTOpY0MQyTaFQnkdYGsViSuCmIJQ103SAWs9YfTWItH08S0yGSMEjqBrF4kphpENF1kkmdaCJJxDAIJ5IkkgaxpG7pZJKErhNP6oT1JGE9QUI3LJ1MEE4miek6cV0nbCSIGAliSZ24oRM2kkQM67glDMP6v5EkridJmDpRI07MtNpUN430ORIzE+imTsKMkTTjxM0YhqmTMCIYZoyEGcMwk6nzOYpuRq00omYQYYYxjSCQTF0HUTBDn/AF+jHG6QFTH+X1T4QQIkMIsUwIcTj1N/A36v1RCNEshNjzZ+9/WwhRJ4TYkXot+rvb/IzR/+0wEgeJtZ6P5aNXEc7L6Qz+CYvRq9icl9ESfD7F6BXczgtpCC1JMXoZv+MsjgdXpxi9RLZjNkeDmzFSzD7PMZFDob0pRi/ITzH60/nnCxyVHAt1EEnltsm3l1IbidGTtDzVubY8WmMyrXHLU52lBYjqbmojVt4Tv+rGLrI43GMNqPIodrLVfHZ3Wh1oDlmlwlnKppYTFiaRZMb5B7C67lhaz8yuYNnxIxiYaJLMouKBLD14CD3F6M/tN4g3dh8gaRjYFJkLq6p5eYvlm7cpChcPH8JLa3eR0A3sqsIl44by0oqdxJM6dk3h0inDeemtVG4bm8pFs4bzyutb0z76ixaO4LUXNqcZ/XmLR/HG0xvTPvpzLhrDm39al2b0iy8fz5uPvk80HEezqyy+ZjJLHllJNBxHtSksvm4abz68ilgkbvnqPzedtx5fTTyaQFFl5l89hWXPbiAeSyArMnMuncjKV7eSiCeRZYlp545mzfK9JOM6kiSYNH8o69cdSzP6sdMGsnX3KRKpXDjDR5exq6aFWNyac7a6qpBD7R3p/PMDy3I4lQjSmco/X5aXQaeaoKnLGitRmOFF9wlOphh9ttuFO8fGoTZrrITPZqe40M2uVquNnYrKyJIAW9tOptpQYW5JDpvbD2NiogqZs4uK2N65ExMTRSgsyhvA3q51mBjIQmFe1lBOBN9OM/rx/sl0hF4AEghhp9JzKWbkGSxGb8eR9QaSOvDjvPT+4fhYGH1ZkZn3rS9/pLonb7jnf7w9IcSPgXbTNO8XQtwLBEzTvOev1JsGBIEnTNMc0uf9bwNB0zR/8lG3+dkT/YeG4MN+y/3l97r4OxX+/A3Rh33+9fIPq51OWp7W4oxlBGdqq1/hz9f5l1s8Y4k/f+PPlpD+Yn0CkT5kJn9WjCTOPKJCgEg9bJh/9nH+IkxS+9+7BiHOPIX/8vOJM7fX55T/q9sT4s8P2Zn1pT5tkDr+f3G8Pmx//rJJ/qIJz9B/1mYCzjgLPmR3/6y++TfrnLnGvwyRJv6kfPMffp7+W4chPtrrn4tzgcdT/38cOO+vVTJN832g/Z/dGHzG6D80JHUgivsWkqHHkNRqNM9duKUcQsHfoiiVeH1fw1AG0N79S1SlnFz/N1C10dR1/QybUkxZ4Js4bbM41P4TbEoe1Vn3kuXaxbbWn2KXMxmTczcl0SO9jD7/q1THGnir4ZcpRv8VOuKdPH/qN6jCxqUlt9GTjPDH479HFgqf73cLUcPkl4f+CMDtA69HoPL9vY+jmzr3VF2FQ3by9R1PE9PjfHPoxWRqXu7Y/BzBZIxvDz+HEmcWX1j7Ap3xMN8ZtZAqfz43rXiJlkiI+8bNYUx2EbXdXTSEgnxtwjSmF/fjZGcnp7q6uGPSJBYMqOB4awfH2zv4wpRxnDesmqPNbRxpauP6aWO4dNwwjjW0caCuhSumjeDaWWM4Xt/O3mONnD9tKDeeM5ETpzrYfbCOhdOruf7yydTXdbB910lmTRvEdZ+bRktDF5s3HWXylEquuWkGHc3dbFh9kLGTK7j61pkEO4J88M4ehk8o5+qvzCceirHi1S0MGVvOVXctAlPnnafWMWhUGVfdsxibXeH1R1YyYFgJ13z9PPzZHl7+zTLKqgu57j8voLA8l2d//hbFFXnc8K0LqBhRxpM/WUJ+aRaf/9b5DJ86iD/+eAk5BX5u/s9zmbilhj/8eCmZ2V6++I3FHDzQwG9++jY+v5Pb7zmLmlNt/OyX7+B22/nqHQtp6Ojhhw++g92m8s1bF9ARiXLfI29bjP7zC4kaOnc/uRRJCH6UYvR3vLQU3TD4yfkLcDo1blvyJlE9yU/mLSDL7eSWla8SSsT50eQFlPp83LbheboSEb4zYhGD/Nl8fdfjKUZ/DiMCJbQdaqc93sEVJRcxwj+IjngjnfEmZuddyVDfWILJk/TETzEk4waKPPOIJQ8RTRwm1/sFHO4riCYPYyT2o7quR1L/asbxf8sQHx1wZAkh+uKGP6RSrH+UyDVNswHANM0GIUTOP7CLp+M2IcQ1wBbgP0zT7Piwyp/d6P9eCA2Eav1FQggVgYIQKqedNJJQLOeCSJULGYFilaOk3DCWFihIKEip5QVy7/JISEJOu29O69PuGiGklPPG0pKQkIWZngFKFlJqZKNE0rS0LCRUSaAjoQiR0tZ7ipAsp4lsuXEUycpxqMpSyv0hLGeJIqfdHkJYThJZkVIOGoGsSsiKQEk5blRVRlYlVEVCkgSKTUbWJGuEqLCyQEo2GcWmWE4Uu4xk79WyQ0HYZWS7YtV3qEgOFcWhWs4Zp4bk1FCcKkKSUJw2S7s0a30uO7LLieK2I0kC1eVA9jhRPE6EBKrbgep1o3pcSLJVrvjcqF4XQhKoTjtKqlxIEopDQ3a7kN1OhCQh2VQUtxPF7USSJWSbguy2Ibs1S2sKwqUhOVVEWqsIp4JIHTthl5DsklVfkZDsMpJsaUkYyDbrWMqyBBIoqoQwrYyYkhAoqtV+smQdY1URKKblupElgU0R2AxhaSGwSRI2SVguKyHQJIFNEijC0raUPu3QUZBRhGQ5dIRAQUVBQUZLndc2EFrKgfMpiX/MUdP6YehGCLEcyPsrRd/4x3fsL+K3wPew9vZ7wE+B6z9sgc8Y/YeEkThMrPUcLCavIZxX0hl8LK3tzstpDT2bYvQqbucl1AVfSzF6hQznYo73rEgz+2znXA4HN2GYls8+3zGZQ6Hd6GYcgSDfMZKD4RMkDGsO2kLHII6F2gmnctsUOvpRG4nSlRoglW8voC0u0RKzeG2OLZOI7uZU2PJUZ2heNLI41GP55r2qk1w1n50dpzABp6xR6SpjQ/MJDExsksL4wABW1h5NM/k5uZW8c/ywxeQlmbOLB/HmoYMkDQNNlrmwfzWv7N6X1pdWD+HFLbtJpBj9ZSOG8vzanWlGf8W44Ty7Ykea0V85dQTPv7WdWCKJ3aZy+ewRvPjaFqIpRn/pgpG8/FLKR29Xufic0bzyzAaiEYvZX3DRWF59Yi3RSAKbQ+X8yyfw2qMfWPnq7SrnXj2R1/64mlgkgWZTOOdzU3kjpVVN4exrp7DkiQ/SjH7hlZN4+7mNJGJJFFVi7sXjWf7qdovRKxIzzh3F+8v2kojryLLEpLmDWbfhCIkUsx8/dSAbd58inmLyo0b3Y8eJRqIxSw+rLuJAaxs9qfzzVf1yqU2EaEvltinPz6RTjVPfaY2VKM70YXokjqdy2+R63HiybexvtfphAnYHpYVudrTWYwJuVWNMcQabW618RXZJYW5JHpvaDlqMXlJYXFTM9o7tGClGf1beQPZ1rcHAQBYqczJHcCK4FJNkitHPoDP0DCYJBHYG+q7CDD8NxAE7tuw3P3HnzcfC6EuLzfyv3/6R6p645av/DKM/CMxIPc3nA6tM0/yrAxGEEGXAm30Z/T9Sfjo+Y/QfGnofHmlCamDTaW2mJgixwsBMDXQ6XW51spp96if6eLxNTJJpj7cJGKaOmZ6T1sQwdYy0Bv3vauMvtN5HG6ZB0jTSe6SbBknDSO+DgUnS0Pvsk2mVm321jtHn4SDRp74QpOr3HoWk3rs9gITeuz2BSJWf1pBM6n1GKpCesKNved+wkoWdNuKndB+fvp4wzvD5633qm6aZnuT7dHkyafQ6xM0zt2etT09/PsM00XUjPY3w6eVPz0kLoOt6Wp9en96nPKkb6EbvZ0waBsm+yxtWG/Rq4wz9F21qnG7DVDkmuvlnn8E8s010U++jzdSAvr7vJNJthCB13vdZg3lmm/xbx7/GR/86cG3q/9cCr/0jC6e+HE7H+cCev1X3dHyGbj4kJHUQsvNa9PCfEMogbN6v4pJ8hIN/QFYq8PnuxVRK6Oj5FarSjxz/N5DUYdR3/QJNKaQ08A3stskc6fg5NjmHQZlfw+fcyo7WX2CXMxiV/VUKPQf5oOkX2GQP0/LupDJax9uND6BJThYV3E5bvIPnT/4GVVK5pPiLdCejPHLsd8ipXDcx3eCXhx8G4LaK68FU+P6+x1KM/mqcsot7d/yJmJ7kP4dcTJbNz5c3PU0oGeO+YedS5s7h5g+eoysR4dsjFzLYn88NK16kNRriP8fMZkJuKcc7O2gKB7l73FRml5RzpL2duu5ubp8wkcUDB3GopY2T7Z3cPGkslwwfyoGGFo61tHPtpFFcM2kkB+uaOdzQyqWTh3PjnPEcOtXC/pNNnDtpMDedO5EjNS3sPdrAvImDuOHSydScaGXn3lpmTBrI9ddMpb62na3bTjBhfDnXXj+d5rpONq0/wqhx/bnmCzPpaO5m3Yr9DB1dxtVfmkOoM8zqpTupGlHKVV+ZRzwaZ/lLm6kYWsRVdyxAEoKlT62lX1UB1959Fh6/g1ceXkVJRR6fu+dscooCvPDgCgr6ZXH9vYspHVTI079aRm5RgM9/7Wyqx5Xz+C/fJTPXy013L2Ls5uM89Mt3CWS6+eJXF7Jvfz2/fuBdvF4Ht39lAUdPtfHT376Ly2njrlvnU9/ezff/8A4OTeEbN82nIxLlPx97C0WW+e6184kYSb76zFIEgvsvnY9QJb780psYpslPz1uI06HxhaWvE9eT/GTOQrK9Tm5a+RLhZIIfTVxIP7+f2zY8Q3ciyreGn8WQjFy+tuMRuhIhbh14LqMzSmmONtGZ6OSSoosYFRhMW+wUXYkWZuZcyVD/RLrjRwkma6n2X0+h7yxiib3EEsfI9tyM3XsdseQ+zORBFOe1n7jj5mMN4+9X+RjifuB5IcQNwEngYgAhRAHwsGmai1L6GWAGVn9ALXCfaZqPAD8WQozA+sqpAW7+exv87Eb/d0JIOQjJj5CzQahIKS3L2SBsyFI2khRAlrIQwoYqZyFLflQpC0nY0aRMVMmPJmciSTbssh+77MGh+FEkOzbZhz31UiQHTsWDS/Zgl91okh2H7MStutEkGzbJjlMWeFVrhiCHbEcSBj7VmuHHKdsBmYDmImnquBQ7dslGhuYiqidwq3Ycskam3YWWkPFpDpyKSpbDiSyD32ZPawOdDLsDu6yQ6XYQJUGm04FdUchwOwjqcTJdTmyKTIbHSWc8SqbbiarIZPqctERCZHqdqLJMht+FJxgky+dCkSUyAk7cnXayMtwoikwg04Wr1U5mVkpne3BlOMnI9iDLEv4cD84sJxm5XhRVwp/vxZntJpDvRZZlAgV+XLleAoUBZFkiUBjAlesnUBRAUWQyijJwFwQIlGShaAqBwgw8BZkEirNRNAV/QQaewiwySnNQNYVAfgBPYSaBkmxUm4o/34enMINAcSaaXcWX48GV78ef78Pm0PBkuXHlefFkeywdcOLKceP1u7A7Nbw+B+4sFx6nDYdDw+224clw4LRrOBwacWHgzXCgyjJOh4ZsSPh9DiQhcNltCEXg9zowTBO3TcOhqWS47UT1JB67DZeqkuVyEkzE8NnsuBSNbKcDLQ4BmwO7pJLtcCJLOgHNiSapZGhuEDF8mgdV0vCoXnQzjEvxIQsNh+InaXbhUAIIoaHJ2RhGG6qSDagIKRukJpCzPtHr82ONf9HEI6ZptgGz/8r79cCiPvryv7H81f/oNj8WRi+EWAD8EmuGqYdN07z/z8pFqnwREAY+Z5rmtr+33k+c0SePEms5m15Gfw2dwUfoZfRX0Rp6Ks3oPc7LqA2+mvbVZzjPo6ZnGUaK0ec453MktC7F6GXynVM42LOHpBnDYvKjORKuIW6EEQgKHYM5Em4lrPcAgiJHf2ojEToTFq/NtxfSHpdpjlm8NseWTUx3cyI1EUmW5kMT2RzsrsUE/KqLbK2AHe0nMTFxKTYGufqxrvkYBmCXVSb4B7Ci7oiVu0ZWmJM7iKXHD6GbBjZZ5pyiKl47eIBkSl9UPoSXdu0lYVj68sFDeX7LbuK6jk2RuWrEcJ5Za/nmbarCNRNG8vTKbcQSFqO/ZupInn57G7F4ErumcPXs0Tz7RorR21SuXDSa51/enGb0ly0ezYvPbuxl9heO5eWn1luM3q5y4aXjeOWJdWl9wZUTeOXxD4hFLUZ//lWTeO3xtcSiFqM/96qJvP7UeuKxJKomc9alE1jy/CYS8aTlq79wDO+8sZ1EXEdRZGadPZwVy3sZ/dQ51azZeIT4aV/9lArW7zpJLJ5EEoIxo8rYdqKBSDRh5auvKmJ/exvdoSgCqO6XR20iSEu3NVZiYEEWnXKcug5rrERpph/DI3E0ldsm3+PBm6Wxr7UZE8h0OOmX72Zbax0m4FVtjCvOYFPrcUxMHLLK3OI8NrftT/W7KCwuLGNbx1YMDBShsDC3mn1dqzHQkYXK7KzRnOh5I83ox/nn0BV6CpM4AhsDvNdhhv9EL6NfgqT0/1++Gj88PhZGX1JsFtz9lY9Ut+ZLd/3/letGCCEDvwEWAtXA5UKI6j+rthCoSL1uwuo1/r8fqRuwFUZqNCx9dPgMbZghegGegW6GetkmJroZ7sPgDXQjipHmmyZJM5qedMTEJJEaHXu6PG7ESBi9/QQJI/EXOtZHx40kMT2R3oO4kSSq9/LWhKET0RPpX6u6oRNJJtIMXjcNwslEmvsbpkk40atNIBxPnMHsz9TiDC2AcCyeZtYCQTia6M0XLwThaDzNwAUQicR7c9NgZYPsG2doE6LheLpfxTRMouFYH0ZvEgnFexm+YRAJx9PlhmESicR6c+8YprW+VBiGQTTSu3+GYRCLJPoweGuU7Wnmbpgm0Vgi3c9gmhCNJ0mkuL8JROMJYsnevp5oPEks0atjySTRPuUx3dLpNtWTRPQ+2tDPaOOkYRDT4739MKZJTI+d0Q8TN6IY9PYNJY0IJn37AaxR3qlGSl0HfRhHaoDfpyI+pbluPo7O2HHAEdM0j5lWb+SzWAMC+sa5WKO7TNM0NwD+P+tQ+D8ZQqlCdl4CaAilErv3qzjd1wE2FKUCr+9rBDxfQGBDVfqT4/8GBb7bEcKOTSmlNPB1KjLuRBJ2HEoBgzLvZWTWXcjCjlPJY2T2V5maeyeKcOBSspiaeycL8+9AlRy4lADz87/ExUW3YpMcuGQfFxV9kc+V3YxDduKS3VxbdiO3lH8Ol+zEJTv5woDPcefAK/AqLlyynf+ovJJ7qy8koLlwyTa+MfhivjX0HLJsbpyyxneHn899IxeSa/fglFW+M/Is7hs7lwKXF4esct+YuXxr/EyKPD7sssK9Y6fz9SnTKfH5scsKt4+byN0zplKWEcAmy9w4fix3zp5M/6wMNFnm6nEjuH3+ZCryMtEUmQvGDeHWRROpLMpBU2QWjKnklnMnMag0F1WRmTFqADddPJnBFfmoiszEUf244crJDK0uQlVlRg0v5frrpjFiRCmqKjN0aDHX3TiDMePLUVWZqiGFXHvLLCZOr0RVZQYOLuDa2+YwbcFQVFWmfFAB13xpDnPPG42qKZQNzOPa2+dx1mXjUTWFkvIcPveV+VzwuSloNoXCsiyuu3M+l984A82mUFCcwefvmM91X5iFzaaQVxDgpjvmccutc7DZVHJyfdz6pbnccds87HaV7CwPX7l1LvfeYuWQzwq4+OqNc/jW9fNx2jUyvE6++bl5fP+K+bjtGgGXg+9cMY8fXrgAr92Gz2Hnvy6Yz48WzcNvt+O12fjvRfP50Yz5ZNgdeDSNn8xcyH+NX0C23YVL0fjviWfzzaGLybF5cMga9w0/h1srLiDL5scuadw24AIuLbmCTC0TTWhcVHQpc/OuJ6DloQiNadlXMTzry3jUEiShMch/HQX+e7ApAxDYyHRfj91zF0IZyP9j773j5Drre//3c9r0ur33XUmrsruSVqvei1VtSa6yLfcKGDAdckO5CaSQ0CG0AAkQCIFgwBj33iSr9y5t77M7fU77/TGjkci9cXx/+MK14+/rpZf37Tlnz2ifOUdn38/3fB7QkN3XI5Qpf+Iz9Z36r+rNcPQVQPdl3APMewPbVAD9//GbCSHuInvXT3V19Zvw9v7/lxACobQg5EokpRmEG1VpQVOqkNUWJOFFVZpRlCo0pQlJ+HAqDTjkSpxqLbLkx63W4lIqcSkVKJIfr1qFR6nApRShSX78WjkhrTTr7pUAAa2YsFaCU/biVgIEbSjSitEkJ17FjxAOSpzFyELBr/pxyTblruzzFiE1AChUuwsxbJNCRwCn7KLWU0jSzFDiChJUPdT7CojqKcrdQUKai0Z/AWPpOFXeIAHNSUMwjDcZo8YXIuBw0hQO49Jk6oMhfA4HDYVhZFWiPhTC69BoKA5hyzYNRSHcmkZDaZgMJg0lYVyaSn1FAQnboLG8AJdDo74qzISRprGyEKdDpa62kNF0isbaIhwOhdr6QgYSceobinCoKrWNRfREotQ1FqOpMrVTSjg/OkHNlBI0TaZmWhmnBsapnlaKw6lS21rOsfPDVLeWo2kqda0VHDreT3VrBU63RvW0CgoP9lDVWoHDrVE9tZyiphKqppTh9DiobCmjsLmUyoYi3F4nVc0lFDWVUFldgMfnpLyhiMKmYsrKgnj9LsprCihqKKCo0IfX76S0IkhRXYiCoAd/wEVpWYCSmhA+j4NgwE1GWJRVBnE7VEIBN7JTpqI8iCbLFPjcpCyTqrIgQggK/R6ELKgpDmLaFsU+Ly5Noa4wRMowKPP5CDudNIaDRPU0FV4fIYeLxkCYiJ6g0hPEr3qo9xQylpmk3F2AV/FQ4SrFJSuUOotxyh5KHBU4hKDQUY4qeQhqtcjYBNRaZOHDpTYhoeNSW0DyICvN2HYaSWl+26wXC/9HD0y9peoPdvRCiKuBtbZt35Hjm4BO27bffdk2vwE+a9v28zl+AviQbduvvd73/tM7+jOkhzeQdfIOJM+tTMa+mWeHeydDse9hk0ag4fXsoCf6sxyrhD3bOBt9BMtOI1Ao8aznZOw5TDuNQKbcvYwTsb0YdgqBRIWrk5OJ06StOCCocs/kTHyYmDGBQFDpbqInlWQsk+2br3RVM5qRGEhl++bLnCWkTQ/n49me6iJHCE0UcXSyGxubsOajWK3gtbFz2Nj4FCctnnpeGDyNmfO588PNPNZ7EtO2cMoKa0qm8euzF528wpaqafzi+JG8k7+uYSY/PXQo6+RlmZumtfGj3fvzjv6WjnZ+8OLebN+8qnDbvNl8/+ndWUevKty2eA4/eHQ3qZyjv3XlHP7pN7vyjv6WtXP54S9eJZXWcTlVbtw0lx//6yVHv+OqufzLj1/O8/VXz+Mn//wiqVTW0V93fRc//cGLpFM6DofC9h3z+dkPXiSdNtAcCluv7+IXP7ro6BU2XzOXh/5tN5mMgarKrL+qg4d/tZ9MztmvWT+TR588kmVFYvmKaTzx8kkyF7NwFjTx3KGzpHJrzM5vr2PX+T7iyQySEMyeVsXRkRHGY0kEMLO+nO70JIMTMQTQUl7EhKJzYTwCQENhGMsLJ0dHsYEqvx9/2MHBkQFsoNjtobHUy2sjF7CAgOZkfkUhr4xk84ncssaa8nJ2jR3GxMIhqawvr2fP+C4sTFShckXJDI5MPImFgSw0lhd0cSH6Cyz0rKMPrSMS+wHkHH29/05I/ABIA060oocRSu0f7bz839Wb4uirquyKB9/3hrY9+74H31KO/s24o+8Bqi7jSqDv/8c2/++Vncj6XhuySZWXP2X8+2xjYJnjkHefBroVyTt5GxPdjOSdvI1JxprEyjl4G4u0Fc1NzGb/T9qMkbHSObJJmXFS5iVnnDQTpEzlMk6RMuS8QkyaaXRSeR+bNNNExSVOmTpRPcXFLmrdMpnQU/nee8OymMhcYsu2mEil833cNhBJp36vrzuSSuUdtUAQSV7OEEkkMc1LTj4ST15y9kIwEUv+nqOfiCXzP1NsmJxMXjY+MDGZ/L18+4mJRJ4t02Iycul107SZHE/k70BNw2IyEr+MTaKTybzDN02L6EQyP4dgGiaTk5fer2laRCeTWKaV58lYKu/kLcsmGk+Rzhi5n59NLJ4mmb44DwPRZIqEfonjqQxx7dI8SyydwdQuaeFYJoPIXOK4nh3DiyOQNHSiepKLnfIZyyBmJjFzWxi2ScJMYOWcu4VFyozmOTsXNJFfsD7794rAZY4e+zJGYNuJt0/azdv0jv7NcPS7gCYhRJ3IrsRxHdkHAi6vh4CbRba6gImLWQ//L5dQWpGdmwEJIdfi8D6I0309ICHL1fgCHyHgvRWQUeRKioIfo9R/NyCjyWXUBD9CffA+BAoOuYiWgg8zM/zuHIdpL3yQruL3IKHgkAIsLHkfq0rfgyxUnJKXVWXvZkvFPShCxSm52VJxDzuq70AVGg7JyY7qO7ij7mYckgOH5OCOupt5d9P1uGQHDknl3Y3X8+CUbXgUJ5qk8IEp2/lI6yb8qgtNkvno9M18fNY6QpobVch8bNZaPtG+mkKnB0VIfLhtOR+fu5xilxdFSLy3bSEfXbCEMq8PWQjubpvLhxYvptyf5Zva23j/soVUhgJIQrC9rZX3rFxATUEISQjWz5zC/WvnU1cSRhKCFdMbuG/jAurLCpCEYMG0Gu6+agFNVYXZu9+pVdx1zUJa6ksQQjC9pZzbb1jItJYyhBC0NJVw282LmTG9CiEEDfXF3HLrEjrm1COEoK6+iJvvWErXomaEJKiuLWDn3ctYsmoaQhJUVIfZec9yVm2YhSQJyipD3HLvCjZtnYMkCUpKA9x230q2X9+FJAmKiv3cde9KbrxpAbIsUVDg5Z57VnLHziXIskQ45OFdd67g3TuXoSgSQb+L9922kg/dvAJVkfF7nHzw5hV84oaVaIqMz+Xg49ev5JPbVuFQFTwOjU9uX8X/3LgKl6rgUlU+s3EVn1u1Greq4lQUPrtqDZ9dtAavquGQFT63aA2fnn0FftWJJsn8z9kb+HDrJgJqdkw/NG0TdzVsJaB6kYXM7XVb2F55AwE1iITMprJtLCu5HZ9SgEBmXsE1zCh4D26lDIFMQ+B6SoMfRlUqAYmg5wY03wcQcjUgIbm2IJSpf8rT9E0tYb+xP2+1+oPv6G3bNoQQ7wJ+R7a98ru2bR8WQtyTe/0bwMNkWytPkW2vvPUPPe4fo4QQSNo8zMwBJEcbQg6gavPIpF9B0WYiSUGc2lw05Tkc2hRkKYzP0c6k0oxLa0CVCwk6Z+LXmnCpVWhyISHnFEJaI26lBKdSRIGjkUJHIy4ljEcposgBpY56nLIPv1KMcDqpcNWhSU5CWjFOOUWduxpFyBQ6itAtm0ZP9pelMmcxCIUpvioM26DSU4xDctHqryBlZqjzlBBQvbSFKpjUEzT7Syh2+OkoLGc0HWNqsIRSt5fZReUMJCeYHi6lyO1hdlk5F6IRZhWVUeByM7uinDORMTrKygm5XMyuLufEyAizK8sJup101FWguRRm11bgdzvpaKxAdkjMaazE63LQ3lSBpdrMaanE49Jon1ZBRjHpmFaFx+mgbXoVcQzap1fhdqrMaqsmYqZpa6vG5VSZ1VHDSCrFrI4a3C6NWZ219MfjzJhTi8fjYNa8Oi6MTzK9ow6Px8HMrnpOD0ZonVWNx+tk+rx6jnWP0NpagdfnorWzjgOnB5jSUobP72JaRw27j/bQUF+MP+Bmans11QfPU1NVQCDkpmV6BdUzSqkoDREMe2iZWkZtawklhX4KC700NZZQN6WEwqCXwkIfjcKmoamYgMdJSaEP2SHT1FCE26FRXhDA63Mypa4YTZapKAiQtkymVpUgBNSEgwhZML28GMu2qQuHcGkK7WUlpEyDpnABYaeT9qJSYnqa5mAhJU4fHeEKxjMxWvylFDoCzAjWMJqO0OSrIqgGaPHWM5oeps5bh0cJUu2ewni6l0p3Cw45SLFzJpOZ0xQ5ZyFLIbxaJynceLROkPwIrRM7oyG0zreVo3+73tG/k3XzOmUZ50gPX8ElR38Hk7Gv59nhuY2h6Hexcxzw3ERv7F+w7RQCjbDnas7GHsayUwhUSjwbORl9FtNOIlAod6/gRHwvupVAIFPp7uJU/BQpK4pAoso9i9OJYaLGOAJBlbuFvlSCscxQrs++ltGMRH8q+8tRubOMjOXlbLwHG5sSRwGqKOLwxHlsbAo0PyWOSvaMnsHEJqC6afbU89zQKUzbwqM46Ao382jPcQzbwiWrrCmdzkNns07eKStsrZ7Bz44fImOZOGWFGxpn8aNDB3KOXuGWae384LV9pE0Tp6JwR3sH//jSa6SNLN/VNYfvPL2blG7gVBXuXjKX7zy6K893rezku795lWTO2d+1bh7f/eUrWUfvULltwzy+/7OX83zLVfP4wU9eIpXWcTpUdm7v4p9+9GLO8SvceM18fvijrJN3OBRuuLaLH//opayj1xSuvbaTn/zkVTKZLG/dOoef//slR79lc0d2TduLzn7NDB5+5jDpjIGqSKxaOo3Hdp0glTZQZInlXU08c+QsiZSOLEksaqvj1fO9RBNpZEnQOaWaw6PDjEYTSELQXpd19H0TUQTQWl5CRM5wLpdt01RYgO2BY6PZZyWqA0HCYY39I31YQKnbR3Oxl10j2byikOZmYXkBr4ycxMTCqzhZXVbBq2MHco5eY0NZI3sjL2HaJqrQWFPcxtHJx7BsA0VoLC1YSHf037DIIAkHs4ObmIz9Y3buSTip9d+LHf8ulxz9IwjlT9448aY4+soH3pijP/PB/36O/u1bdvT3Hb05+HtsmkOXbaxjmEOQd/I6GXMEO+/kddLmaH4hcBuDtDWGkXfwJklznIyVzLFF0pwgZSZybJMwoiTNVJ7jRpTEZY4+bsZJmSLv4GNGAolLvfxxI0VExPNOPm6kGc8k8g4+ZeqMpRIYOdYtk9FUHD3n2E3bYiQRR7cu+l2bkWQC3byUdTIcT+S3BxiKxTFyDlsIwVD0EktCMDyZyGe/SJJgZCLOxagXSQiGI7HL8oFgdDx2KYsGGB2L/Z6jHxmLIaScc7dsRsdi+cx807QYG41dcvKmxehoDCm3vWGYjI1F88fKcjzv6A3DZCwSzzt6w7QYiyTyTt4wLcYmE6Rz+TmmZTE+mcg7edOyGY8liaWy8yyWbTMeTxI1Ln4GsnMYk+qlZx8iqRS2culpjIl0CpE2804+mkkxnpHyTj5mpBnPxPNOPmlmmDBilzl6g6gxmc+/sTBJGJfPHdnZzykX5wlsDHMYO88C2xyGiw5fCGw7+rZw9G9VLfNG6p1Qs9cpoUxHdqwBBEIux+H7AE7nlYCEJJfg830Iv+c6QEKWiigMfoQi3y2AhCIVUBX6MNWBOwEZVQrRFP4gU8P3IJBRJR8zCt/PnMJ7c+yhq/g9LCu9FwkZVbhYVno/G8rvRBYKqnCwseIurq68NccaV1fdxs01N6IKBVUo3FxzE3fXX4smqShC5u6Ga3mgeStOSUMRMu9pvooHp27CJWsoQuLBqRv48PS1eBUHspB4cNoqPtK2Cr/qRBYSD7Qu4SMdywk5XMhCcE9rFx+at4QClxtJCHa2dvBg1yKKPR4kIbimtZX3L1lAideLJASbprXwwLIFlAV8CGDllAbetXI+FWE/QsCCphruWzOfqsIAAuior+DuDfOpKQkhgOl1Zdx91QLqKwqyHSk1xdx59QIaa4sQQH1VAbdfv5ApjaUIoLoizO07FjGjtRIhoLI8xC03LqSjoxYhoKw0yM6bFzG/qxEhoLjYz623LGbp0ikIAUWFPm67dQlr18xACEFB2Mvtty7hyo3tSJIgFHRz1y1LuXZL1uH7fS7uu2Upt27POnyfx8m7b1rG/VcvQpYEXpfG+25YxoNXL0WWJNwOlQ9es4yPXbUcRZZwaSof27qcP9u4AlWWcKoKf75pJZ9csxJNlnHIMp9evYLPLFmFQ5bRZJn/uWQVn563GpesoEoSn+5czZ/NWoc7N6afmLmO903ZhFvOjum7mzdwa+1WPLILCYkbqjexpeIG3LIXCYnVJVeyuOR2XHIAgUR76CqmFbwHh1wASFT7tlMS/BCKXAJI+N1bUX3vA7kMEEiOtQjlPz4f+RauP87CI3/0eueO/nVKCIHkXI1pnEfSOhByGM21Bl0/jqLORFaK8TpXkskcQFOmoMgl+F3LiKVew6E2oMrlhF0LGE++jEupxKmUU+yay7DzBZxyMV6lgjI3lLpacclh/FoVQriocE/DIXkJaZU4pAD17hY0yUmxowKfkqbJOwVZKJS7qjBsi1Z/NlSqxlMJKLQFmjBskwZvNQ7JSWdBPSkzw7RANT7Fw4KiemJ6kpmhaoocQZaU1DGaiTGnsIYqd4hl5fUMJCeZX1JLpdfP8soauuMRFlfUUO7xsaymjjMTYyytrqPE62FZfR3HRkdYVldPgdvNipY6Dg0NsrK5gbDHxYppDezt6WPl1AZCHhfLZzay61w3q2Y2EvA4WdbeiOPkeVZ2NBHwOFne2YjslljR2YjP5WBpVxOmQ7Csswmfx8mSRc2kNIslc5rxuh0sWTqFmGSyqKMBr8fB4qVTGNPTdLXV4fe5WLR8CoPJBLNnVOP3u1iwvIWeySgzplUQCHqYv6SJMyPjTGkqJRTy0rWoiWN9IzTWFREu8NLZ1cD+CwPUVoQpKvIxe04du8/0UlkSpLjIT8esGl48cZ6SsI/y4gDtVNI6vYICv5vK0hCyU2ZGaxkBt4vqkhBen4O2KeV4NI36kjBFupeOxko0RaKxpIC0ZTK3oQJZCKaUFoGA+bWVmJZFa3ExLlVhcWUVSUNnVlEZQYeDJWU1xPQUHYWVFDu9LCpqIJKJ0R6qodQVojPczHgmwsxAIwVaETP9MxjXh5nia8WvFtHk7SCi91Dvm41TLqbctYiYfooy9yJkuRivczVp/RBe1xqEXIjiXIOV2YvsXPO2cvRv1zv6dxz965RldJMeXkPWyTuRPHczGftynp2eOxmJ/kPe0fu8t9AT/dFljv46zsZ+jWUnEaiUerZwJvYUhp3IOfrVnIy/RsaKIZCp8iziZPwkSTOCQKba08G5+CCTxigCQbV7Kj2pJKOZbN98laueiCHoS2bXgC13VZAxvZyOXQCgxFmEQyrk8MRZbCwKHUGKtSp2j57CxCKoemj2NvLsYNbJ+xQn88LTeKTnCLpt4VE01pZO5xdnD6FbJi5ZZVtVGz8+cSDv6G9qbOefDuWcvKxwR+tsvrtnLynTwKko3Ns+l2+9uJuUkeX7ujr5xrOv5p38uxZ18Y3HXyZ5kVfO5x9++1Le0d+/ZgH/8NBLJDM6Tk3hvg3z+ea/v0QyreNyKNy1aQHf/tmL2T58h8odV3Xx3X+5yAq3bZvPP/7kRdKZrKO/ZWsX3//Xl7OsKezY2skPf/4q6Zyjv27LbP7lodeyrMpsW9/Bzx7bl+ctq2bwy+cOkUobqIrM+sXT+O1rx0mmdVRFYvXcFp46eoZYMoMiSyydWc8rF3qIJFLIksSClhoOjw4xFI0jC8Hsugq6U1F6IhMIIZhZXsqEnObU2Gj2t5jCInDbHBkdxAbqAmGKgmou28am3O1narGfV0fOYtoWhQ4vC0oLeXn0KKZt4VNcrC6r4tXxvZi2iUtysq60hb2R5zFtA01ysLpoDkcnHsZCRxEOFhcsp2fyxzlH72RWcDuTsW9d5ujfA/Fvc3GuSi78HUKp/GOfnr9Xb4ajd1ZW2VX3v/8NbXvqY+9/x9G/bcoaAyHlnHwGy+y5zNFnMM3eyzbOYBh9eZ+cdfQD+cx6G52UOYBpX/SxBilzCD3v5E3i+hBpM5rnmDFCwpwka05tosY4MeNSbsmkEWFSly6xPknSsC7jKLLQ8jkmk3ocYU/mfW3USDKUnMw7+YSZYSA5iZ7jtGnQH5/MO3nDNum9jC3bpi8WJXOZo++NRsmY2b+zAHonJvOvCyHonZj8PUffF5nM9+FLQtA3NpnPxpEQ9I1O/F4WTu/oZP5Ytg39I5OXsmwsi4GhyUuO3rQYGJ68zMFbDIxcYt0wGRy+tL+hmwwMXfr+umEyODKZP76umwyORjFz7183TIbGYvnsGt2wGByP5p28YVoMR2JEU9kxNy2L4ckYkWR2nsW0bYYn44wZyWyEim0zHIszqWbykSojiQS2uJREM5ZKYKfkvJMfzyQZSpGfZ5nIJBlOT+Q5YaYZzYznnXzayhDRR/MZSoZlENUH807ewiJp9P8HR99LdvGc7KjaZi8iz1Kur/5Pe6F/U+odR//fs4Q6A0lbBMggFaH53ofDsRaQEVIBXt+DeNxbABlJClEQ+BAF3msBGVnyUxn8IJX+mxDIKMJHY+hBmoK35djDtIL30ha+Pccu5ha/m4VFdyIhowgHS4rvZU3p7TnWWFt2J1dW3IwsFBShclXFTq6r2oEiFBShcF3VDdxadzWqUFCEzC1127m34aq8s7+r/koeaN6EQ1KRhcR9Tet5cNo6XLKKIiTubV7Oh2aswqNoyELirpaFfKhtOX4163t3Ns/lQ3OW4NecyEJwbfMMHuxcRMiZdfibmqbw3vnzCbvdyEKwuqGR9yyaT5HXgywEi+qqedfS+RT7PMiSYHZ1BfeumEdpwIcsCaZXlXLPmnmUhfzIkqC5ooi7N3RRWRxAlgR1pWHu3NRFTWkIWRJUFQe586ouGqoKkSVBWVGA27Z1MaW+BFkSlBT6ue3q+cxoKUeWBEVhL7des4COGdXIkqAg5OHWaxewYE49cs7B3379QlYsaEaWBAG/mzuvX8T6Za3IksDndXL3dYvZtqot6+DdDu69ZhE3rp2DLAk8Lo13X72Eu9Z35Z38e7ct4YENi1AkCaem8IHNS/nguiUokoRDUfjIhmV8bPVSFElCk2U+vnopf7Z0KWqO/2zpMj41f0VuuUeJ/zFvOX/WsRqHlHX0H2tfyYdar8CZG8P3T1vDfU2bcMrZMby9fh07arbjlBxISFxVsZ71ZTtwSm4kJBYXbaCr6A4ckg+BTGtgI82h96BKQQQyZZ5NFPo/gCwVADIe5xXI3veCVJg9DxxL4O3k6N+moWbv3NG/TgkhobivRrcmkNTZSHIpTvfVmOYAitqGrFTgc29DN7rR1GmoShVh9yYy+kkcSgMOpZoS91oS6SM4lSrcai1lnuVEUvtxKaX4tDoqhZOh5F5ccpigVo8qBemO78Yl+yhyNOBRSmj0tqFKTspc9RRoGVp905GFQo2nEdO2mBXIriLW5GsEFOaGWzFsg1Z/M6qksahwKikzTXuoCY/iYXnJVKJ6gq6CJsKOAGvLpzKWibK0pIVyV4gNVVPoT06wuqKZOm+YDbVTuBAb54qaFmp8QTY3tnB6YpTNDVOp9PvZMmUKR8aG2NIylXKfnytbp3JgqJ+rWqdR4vOypW0Kr/X2sbW9lSKfhy2zp/HK+W62zWml0Odhy7xpvHDqPFvnthL2utmysJWnj5zhyrmthLxuNi9p5fEDp9gwewphn5tNy2fw293HWN3RRNDnZuOq6dgvSiydVU/I72b9mhlkHDbzZ9QRCrhZv24mMdlkbms14aCHK9bOIGJnmNVcQWGBl7WrpzOYTtDaUEZxgY/VK1vpjsdoqSmitNjPyiVTODM+TkNFIeUlAZYvaOHo8Cg1JUGqykIsndvIgf4BysJ+asvCyJrErp5eivxe6ssL8HgdvHjhAkGXi+aKQgrDHjrPVeHVHEyrKKZaD7JwSjUOWWFmRSkZ22RpYy0CQUd5GZIkWFFbiwV0llXiVBXW1DSQNDMsKKkh6HCytqKJqJ5kYUk9hQ4vK0umEdGjzC+aQokjyMLCNsYz48wJz6TIUUJHcB7j+iAzg/MIahW0+JYyoV+gyb8Mt1pJmecK4pmTlHs3oCoV+F3bSOv7CXi2I+QScFwF+l6EaztCvH3uF8UfZ+GRP3q9c6F/nbKMHjLj7wZSmPp+bOFkMvYFIIWh7wPhZCT2dWw7SSazByEc9EV/gG0nSaRfA6FxPvrvmHYCkX4NkDgTexzDjiGhYtkmJ2O7yFiTSCiYpDkVO0HCHEcgkbHinEsOMKEPIyFI9UzQl4oznO5HIJg8N05Eh95kNi9u9NQwGcvH6dg5bCwGjg3hlIo4NHEKG5sLh75KkVbNrrHjWLbF+/f20ext4pnBIxi2xZGJb9MZms7DvVknf+vz32dt6Ux+cT7r5G955kdsrezgX08fIG2a7Hv8p9zcNIcfHj9A2jTY/+jPuWtaJ/90aB8pw2D/0C95V9s8/nHPXlKGwYHBQR7onM93X3mNpG5wqH+IvvEo33x+V5YHhhiLJvjaEy+TzBgc7hsinszw5d++SDJjcKR3iIxu8pVfvkAyY3CsZxjbEnz1F8+Tyhgc6x5GlmS+/vMsH70whKbI/MPPs47+2PkhnKrKt37xEumMwdGzgzgdKv/40CukMwZHzg7i0BT+6ZHdpDMGh88MoKkKP35yL6mMwYEz/SiKxM9eOEQyrbP/dB8Cwa/3HSOeyqAqMpZt88Sx00wm06iyREbXeam3h/F4ElmSiGcyHBobZmAyiixJRFIputMTnI9Esu2kiTgTIsWJsREQgt7YJLLb5uDoAGBzbnKM4qDKntEeLNvidHSE1gIfu0azz0KcfHWABSVFvDJ2GMM2+cj+blaU1LBrfBembfLXx8+wpng6+yaexrR1vnf2BCsL53Ey+jCmneGRniPMD6+hL/YzLDvN3sEDzApeRzTxPWw7xeDoXqr874fk94EUVuQAouhRhFz+pzpN36k3UO9c6F+vrJH/4OjPcSmfPo1hnuNStk0a3Th3WR99moxx/rK++QxJsxvTzjp5C52E0YtuxXJsEM30kTQnyDp5k0l9gLgRIdtVbzOhDzOpp7no7Cf0USKXOfqIPk7SNPJOflyPoCDnOaJHsazxSz5Xj9OfGM87+piRoicxnnfwSVPnQjxCJscZy+BCbJx0zrmbtsX5yfG8k7eB85FIPl9dAOciETI5loTg3Ng4mZzTliTB+dHx33P0cdSXuwAAvTtJREFU50cil/rqheD88Phl2TeCc4Pj+TGwsbkwOJbvk7ds6/fYNC26B8eR807eonswkn89o5t0D0Tyjj6jG/QMXsovyugG3UOR/JxBRje5MBjJzzFkDJPukYl8lo1umPSMTuT75HXTondskolECptsdlBfZJLReOIST0wybMaxyTr7vmiUmJLOjphtMxCPIuXGH2AwGcPU5PwYjqTiDCSN/BiOZ2IMpmWMnJOPGUlGMiOXHL2ZZiwzkF/3wLB0JvU+zNx6x9m++u7c4jjZn7JunMXOZzAJbPP8JUcvJLBG4e1yoX8Lapk3Um+f37n+L5RQZyCpcwEVpBCa9z1oziWAihBBvL734XauBVQk4Sfs/wBBz2YEKpLwURZ8kFLv1QgUZOGhPvRe6gI35tjF1IL30BraiYSCLJx0FN1PZ+FF1lhYfDfLirNOXhYqK0tuY33ZjhwrrC+7ka0V1+V5a8V13FC9LefsZa6v2sqtdVfmnf3NtRu5p3EDmpTlW+vWcn/LWpw5h39L/VLeO20l7pzvvbmhi/dPX4ZH0VCFxDV17bxv1mJ8qgNVkthcN433z16EX8vy6ppG3tM5n6DTiSpJLK6u5V1dXYRcLlRZYk5FBfcvnEfY7UaVJaaXlnDPkk4KPFluLinknhWdFPk8qLJMbVGIu1Z1URL0ocoylQV+7lo7j/ICP6osURryccf6eVQVB1EVmaKAlzs2zqe+ogBVkSgIeLh9cxctNcWoikTY7+LWLZ3MaCxDVSSCPhe3X9nF3GlVqIpEwOPijqvms3hWPaoi4fM4uOvK+aye04IiS3hdDu69aiGb5k9DlSU8To37tyzg2iWzsn3xDpX3bFrEbcvnoOT64t+7cTH3rejK9skrCg+uXcz7li1AlSUcssyHVy3hg4sX5538R5cs4SNdOUcvyXy0awkfm70MTZJRJZmPdCzjwzNW5fn9rct5z5QrcOTG9O6m1dxWtzk/L3N99Rq2VWzDITmQhcza0rWsLt2BJjmRhMzcgrXMKbwdVfIgodDkW0tj6F0okg+BSrF7NWH/+5GkIKDicixD9rwbRJZR5759HP0bzLl5K07YvnNH/zolhIziuQ0TC6HOQVKqcLlvAyuNorWhKLUEvLdiW5Noaiua2kCB9yZ0cxin0oxTbaLct52M2YtLqcKjtlDlc5HQz+BUyghoU6j3B5nInMQlF1LonIpbKWM0fQyn5KfUNY2AVkNf8hCa5KLa3UqJM8O5+EFkodLkm45p2cwJzQag1T8DIWQWFrRj2AYdoZmoksbSonZSVpqugpl4ZA9rStuIGgmWlcwkpPnYUDmLsUyMdeWzKHWG2Fo7k/7kBFdWz6TKU8A19TM5Hx/nmvo2Gv2FXN8yg1OTI9w4pY26QIgd02ZyZHyIna3t1ASC7Jg1k/1DA+yc1UZVIMCNs2exu6+PWzraKQ/4ubFrFi9d6OaW2e2U+n3ctLCD586c44aOGRT5vNy0rIMnj59he0crRX4PN63s4HcHT7KpfSpFAS871nTw8J7jXNHWTFHAy41XzOaXrxxh+YwGioIedqyfw89eOMii1lqKgl5u2DCHHz+zj3kt1ZSG/Vy7YTamS6K9qZyyQj9XX9FOQraYUV9KRXGQ7WvbmLAztFQXU1UaYtuqWYzoSRrKC6grC3PV0un0x6NUF4dorChkk9bK2ckIFSE/LZVFeL0Ojo+PUuz30FpVQlHIy8HhIYIuJ7OqyqguCrJ7qBef5mB2VTlTDJ2X+i/gkBXmVVehWyZrmxuQhGBxdS2SBBvqmzAsk+WV9ThlmS01U0maGVZVNONTHayvnEHMSLCqrJWw5mFtaTuRTIxlxe0UOoIsLZrHeGaMRYXzKXIU0RlaxnhmgDmhFYS0Kqb51zGpn2dqcBMetZZq7zbi+nGq/dejqfX43TeR0Q8Q9N2RbaV03wj6HoT7VrKLzL1N6i14EX8j9c6F/nXKNvswxu8BUtiZ19CFRjT2ebCTGJlXAYWR6Few7QTpzMsgZHonv4dlx4nzMjZwIfpvmHaMCA5s2+ZM/HcY1iQSGpaV5lT8VdLmBBIKhh3nbPwoCWMEgUzamuB8op+IPoCERNwYoz8VYzjdm40AzgwRMQS9ifMAjKQHyFheTsVOAzZ9qX4cUjEHJ05g2RbnEj0Ua9W8OpbtsT4RvUCTt4WnBw9h2CYHI+eZF57Ow337yVgm+yLnWVPczs/O7SNtGewZvcC2qjn88+k9pE2DXSPd7Kyfxz8ee42UafDqUA/3Tu3i2wd3kzQMdg328MCshXx9zy5ShsHugV4e7FzIV195haRh8Fp/Hx9asIgvPfcSSV1nT08fH14e5++eeIGkrrO3p4/JRJq/ffhZkrrBvu4+Ummdz/86y/u7+9ANk7976DlSusH+C30I4O8feo5UxmD/+T4USeKL//48Kd1g39k+VEXiqw+9SEo32Hu2F01V+MZvXiKVMdh7phdVkfnOo9msnddO96JIEv/0zB4SGZ1dp3sQCH7y8n7iaR3H6W5s2+bfDxwlmkqjKTIZ0+Sxk6eJJJKoskwik+GF3h5GYnEUWSKaTnMgMkjvxCSyJDGSSHAhPcGZ8XEkSdAfjxKVUhwbz8ZrXIhOoDot9o/1Zz8/0THKAgqvjZ7HtG1OTA7SWuDjldETmLbJ8Wgv8wtLeGVsf3aMY2dZUVzH7vGXMGyDM/ETrCyaxYHIYxi2Ts+5wywrWMjJyZ9j2hmGkvuZF95IX+yfsewUE4O7aQ3eTDT2LWySDI68QoX/gxD/FpDEzuzGLnoMIf8/v2DcG6t3LvT//co2hy5z9Cks4wSXHH0SwzjBxbUzsxOyJy/rm0+RMk5h5fvm08T105hWdt1Ziwxx/RyZXJ+8hc5k5jwJYzRn4A0mMj1E847eJJLpZ0JP543teGaQcV3JO/jR9AgpK3kZjyIh8n52NB1BN115fzuWidIdH0HP8aSe4Fx8JO/kE0aGM9FR0lb275Q2dU5NjpDOOXnTsjk5MULqoqO3bU6Oj5LMr3EqODk2esnZC8GJkdG845eF4OTIaD4rR5YEJ4ZG8/n1khCcGBi5dO7lOL8mrA0nB0bzffGWZXOyfyTv4A3T4lT/yO/1zZ/uH8tzWjc43Zt9GC3P/aP5OYGUbnBm4NL7SesGZwZH83MMacPkzNAYyUzWd2cMk7Mj40wks04+Y5qcG43knbxuWpwbjzAYj+Ud/flIhH4zhoWNZdmcn5wgqaYwc2+iOzaBapp5J9+bmMBUpLyTH0xOEEhk8mM6kp6kLyXyHNVjDKb7MXKfy5SZZDTdg5Fz9LqVIZI5d5mjN4jrp7DsVO6HbpPRT+QeCsz9H/Mk4iILCazhXCTCW7sEb9+um3cc/euUUKcj1BmAA0QAzfsuVG0u4EAIP27ve3E6luTYR8j/PvzuNQgcSMJDeeB9FHk2I9CQhIva0ANU+a5GQkMSTlrC76YlcB0SKrJwMKvgXtoLbkQSKrLQ6Cy8kwWFNyALFVmoLC7eycqS6/LOfnXpDWws357vo99Yvp3tlVvzvLVyCzfUbMo5eoVrqtZza13W0atC5vrqldzVtCbbky1krq1ZxH3NK3FKKpoks61qDu+ethSXnOWNVTN4YPpiPIqGQ5JZVdHEe2YuzGWjyywur+Xd7V34NQcOWWZuaQX3z5lHwOHEIcvMKC7h3s5Ogs4sNxUWcvf8ToIuJw5FoSYU5O5FnYTcLhyKQkXQz11LOwl73DgUhRK/l7uWz6XI58GhKBR43dyxopOyoA+HqhDyurhjdSdVhUEcqkLA4+L21Z3Ul4ZxqDIBt5Pb18ylpbIIhyrjdzu5bd1cZtaX4VBlvC4Hd66bR2dLFZoi43Vq3LWuiyXT69EUGY9D5d4r5rOurQVNkXFpKvetnc9Vc1rRZBmXqvDu1Qu4sastm1WjKDywciF3zp+DKss4FJn3LV3Au+Z1oeWyax5ctJD3zl2AJmX5g12LeH/74ixLMh/oWMyDM5fl+b3Tl/DuqSvzjv6elmXc1bA2P6Y761ayo3oTmqSiCoUtFSvZVLYdVWgoQmFx4UqWFN+AKhzIQmVGcDmzCm9HES4koVLtWUZt8F3Iwpt9utu1mJD/vQjhAxw4tfnInvtB+LPnhTITlNY/6Xn6ptU7jv6/ZwmhIHsewBTfQahzEUodTu97ga+hqO0oahMB3wPYtsChTUfTplDsuxfsDA61CZfWSmXgNix7ApdSh88xnVophG6O4FLKCDpm4lDKSJl9uORCil1t+LRaopluHJKfck8HBc4WxtNn0SQndd7ZVFoZBlOnkITCFP8cTNvmQuIEALOCcxFCZnFsHqZtMC/ciSpprC6dS8pIs7y4E5fsYkNZJ5N6nCvK5+FXvWytmsNYOsrWqnkUOgJcVzub/lSEG+rmUe4Kc1PTHC7ERrmtuYtabyG3TpnNyclh7p46j5ZAEXdMn82RsUHua+2iMVTIXe1z2Dvcz70zOqkLhrincy67Bnq4fcYcaoJB7lnQyYsXzrOzrYPKgJ97l8zjmXNnuWHmLMoDfu5b0cXjJ09zzazplAV83L+2i0cOn2TzzCmUBv3cv34+v9p/jCumN1MW8nHfxoX8fPchVrU2Uhbyc9/GBfz0lQMsnVJHeUGAezYv4Ecv7GN+Uw0VhQHu2jyfHz67h476SmqKQ9y5cR7fe2o3s2rKqC0Jc/sVndhOwbTKYhrKC7h19RzSskVzaQFN5YXsXDmbGBnqisJMqyrB53UwZiSpCAaYWV1KUdBDfzJKsc9HR0051UVBzscnCLmcdNZW0VJWxInJEbyaxqLaWpJmhqOTg2iSzIraOnTL5MB4DxKCNTWNSEKwd/w8pmmzoWYqDllma80MkmaGTVUz8SgOrqzoIGok2VA+m4DqYX3pPCb0KGtLFxLSgiwrWkZEH2V58WrCWiGd4SsY1/vpKtxCSKtgWnA7k5lztIZ24NUaqArcRCJ9jEr/XWhqM0HfPWQy+/B534VQ6hCeu0F/DeG+/R1H/xaody70r1O2OYARuR3sJHb6RXRkorHPgZ1EzzyPjcRI9AvYdpx0+llsoD/6bSw7Riz9NNgWF2I/wbSiRIQDy85wLvbb7ANYaBhWkjPxF0mbY0io6FaUM/GjxIwhJCGTtMbpSfYSyfQhkIgZI/RnogylLmQdvT5IRBd0J84AMJTux7Q9nIqdwLZtepPdOOViDkwcwbYtziXOU6DV8MroIUzb4nj0HE3eFp4a3I9hGxyYOMPc0Cx+07cH3TLZO3aWVSVz+Om5XWQsg12jZ7mqspMfnH6VlGnw8vBZdtbN51tHXyZpGrw4dI77py7iqwdfJmnqvDR4nvfPWMwX9rxA0jB4oe8CH5mzhM+//DxJw+DFvm4+Pn8pn3v+WZKGwUs93Xxi8TL+8slnSOoGL1/o5hMrl/GXv3uapG7w0oVu4mmdv/zt06R0g1fOd5M2TD73myy/eq4b07L4q18/k+Wz3SDgr3/9bJbPdCNJgr9/OOv0XzrdjSJLfOmRF7Lf/3Q3QhJ846lXSWR0Xjx9AQR89/nXiKd1Xjh9HhP44a59xNIZHKfPk7FMfn7oCBPJFJoikzJ0fnvqFGOJBJosE8ukea7vPIOxGIosM5ZKcjAywIXJCWQhGEzE6c5EOBXJKqee+ARxkeDIWDbP6GxsDIfDYt9YDzZwMjpIpV9l1+hpbNvmxGQf08IBXh09khvT88wrLOXVsdcwbZMTsZMsKmzktfFsts3p2BGWF7VzIPJbTFunJ7GPxQXLODXxE0w7zXBqN7NDW+iPfivr6NMvMiV4J7HYl7HtJOnM85T5P4qIfxXsJKRfxi56NPsQ1duh/ggXeiFEGPgJUAucA66xbXv8P2xTBfwAKCXrh79p2/YX3+j+/7H+oAv9Gz2gEOIcECW70KTxVgkDss1+Ljn5FJZx6BLbSXTjEHlHT5JM5jD2xb55O0VCP4JlZdc8te0Ucf04hhUlt0IsscxJ0rl1Zi0yRNKniBtDgIVlW0QyZ5nUx3NO3mIsc4HxTCbv6EfTvYzpcn69z+F0P7rlyTv54fQQkjAv4xHiuuMynzuOIgbQc/42kolxOjZAJufko0aK45MDeUefNHSOTQzmnbxuWRyNDJG8zNEfHhsiaV5a8/Tw6FDe2UsCDg0P5Z29LASHh4fy+fWSEBwaHPy9fPrD/YN5Zy4hONw3+Ht59Ef6Bi/1zds2h3sHL/XNmxZH+obynDZMjvUN5bdP69mHsLiMj/YN5/vmU7rBsb5hDPMy7h8mnXf0BscHR4ils9k0acPk+NAI48lsdk3aNDk+PMJgPI5F1tmfGh2lN5HN87Fsm1ORUYbMKKZtY9o2pyNjpJVk3sGfi47h0M08X4iPY0giz33JcbzxVH6eZSg9Tk/Syjv5iD7BQKo77+STZpzh1Nm8k9etFJH0yXwGk2lniOtHL3P0Jhn9ILZ9aa1e2ziCuMhCgDkAb5ML/R9Jy3wEeMK27c8JIT6S4w//h20M4EHbtveIrDd7TQjxmG3bR97g/r9Xf6ijv3jAJuCJHP9ntdy27ba3ykUeco5eaQFcILyo3ntR1JmAE4QXj/ddOLR5COFECA9B/3vwOpfm2E1p4AHC7rVIwokkXFQH30W5dzOScCAJB42he2nwb0MSGrJwML3gbqYHr0EWGrLQ6AjfzpyCi6zSVXgTi4u2owgVRagsLb6ONSVb87ymZCsby6/M8/qyTWyr3JTPq99UvpYdNetRhYImKVxVuZxb6tagSVneXDmf2xtW4Mjx+vJ27mleilNWcUgKq8qnct/UxbhkFaessLiknnunLcCtZHlOURX3zujCq2o4ZYUZBaXcO6sTv+bApSg0hwq5p2MuPkeWawMh7pozF1/u9XK/n7s75+J3OnCpCsUeD3fOn0vA5cSlqoQ9Lu5cNJeQ24VLVQm6nNyxaC6FPg8uVcHvdHDH0k5KAj5cqoLP5eD2pXOoCgfzfNuyOTSUhHGqCl6Xg9uXzWFaRTFOVcHj1LhzRSftNeVZdqjctbyT+Y1VOBQFt6Zyz7JOVrTU41AUnKrCvUvnsXF6S5YVhXct6eKaWdNxKFlH/55F87mlrR1HLl/+gfnzuattbp7fO2cB98/syubNSzLvbV/Au1oXokkyDknmXdMXcd/UJTlHr3DvlMXc2bQyP2Y765dyY212DFVJYXvlcrZVbEIVKqpQWVOynLWl21CFhipUOsPLWFC0A0U4UIRGi38xreHbkIULWTgocy+kyn8fknAjCSd+xzwCvvcghBeBC01tR/LcDcKbPQ+UFlDfJo4e/lhZN1uA7+e+/j5w5f/yNmy737btPbmvo8BRoOKN7v8f6w9VN1uAZZcd8Gn+i39Z3kolhIrs+yhm/LsIrRNJacLt+wTJ+NdQ1Nko6jRCgY8zGf0imjoThzaLksCHkCc1HGoLbq2NqkAQgY1TqcPnmE2dVIZlp3HJ5YRdnbjVegwrilMuosTVRUCbStoawyn5qfbOp8Q9i4Q+gCq5afQtpMbWiaR7USSV6YFFWLbFaDobgTA3vBghZHqT5zAsg0WFS1AklfPxs6SsFKtLluGSXWyuXEBUj7OlYik+1cvV1QsYTU9yfc0yQpqfG+sW0Jcc49b6pZS4QtzWNI/z8THublxKlaeAu6d0cSo6zL3NS2jwF/OuGQs4Mt7PPVMXMiVYzANt89k70sfdrV00hQp5X+cCXh3o5rbpc6gPhvnAwoU813ueW1o7qAuG+ODSRTx97jQ3TG+jOhTkQysX8dipU1wzfQZVwQAfXruY3xw7wdbWaVQGA3x4/VJ+eegoG6Y1UxkO8KENS/n5/kOsbmmkKhzgQ5uX8tPdB1jWXE91QYgPblnCD1/Zx8KmGmoLQzy4eQk/eHkvnbWVNJQU8L5Ni/nuC7tpqyqjubSQ921YxDef20VreQlTK0p4YO1CNPcrNJcUMaOqlHd55oNTUBcO01ZVRqHfTVqyqAr6mVNTSVVBgKidodTjYUFtNS2lhYwaCQpcLpbW1tFRUc5AJopP01hT30jS1OlOjOFQVDbUT8GwTM4msrEXV9a1IgScifVjWhZba2ehSTKnYt0kzQzbqjtxKxpn4vOI6Um2Vi7Cq7q5onQJE/okG8rWEFD9rChaTUQfZVXxJoKOIuaFr2Qi00dn4Q0EtXKmBXcwqZ9hauhOvFodVYF7iaePUBG4H02dQsD3PvTMXjze+xFKM7bnPaC/Bu5bEeJtYoDt/6Oum0IhxOUZ6t+0bfubb3DfEtu2+yF7QRdCFL/exkKIWqAdeOX/z/7wh1/o3+gBbeBRIYQN/MPr/UCEEHcBdwFUV/9p16G0zSGM8Z05R/8MOhCN/iXYCfTUU9kWx+jfYtsx0uknsvkyk9/AsqPEko9j2zo90R9jWBNIwoFtpzgXfZiMNYYkNAwrztn486TMESQUdCvC+cRhYno/ApmUOUpPsofxTDeSkIgZgwymYwymziKEYDzTz6Rh0504CcBQupuM7eVk7Ci2Db2pCzilYg5OHMKyLc7Gz1LkqOOV0X1Znxs7TaN7Kk8Ov4ZpmRyYOMncUDu/6nsV3TLYEznFyuK5/PT8y2Qsg1dHT3JVxQK+d/pF0qbBi0On2Fm/iK8fe4GUqfPc0Gnub1nKFw4+R9LUeXbgNB+YsZy/3vssSVPnmYGzfKx9Bf/z1adJGgbP9J7lk50r+dTzT5E0dJ7pOcenF63kk08/mX29+xyfWbaKP3/8CZKGwbMXzvHp9Eo++bvs68+dO09aN/nkI0+SyrFhWXz6kadI6QbPnc2ulfuZ32Ud/nPnzgOCzz2anQN49sw5kASff/x5ErrOs2fOISTBl595iXhG55kzZ7GFzT+8tItYOsOTp89i2BY/2LOXiVQap6KQMQ1+evQQ48kkDkUhoes8fPY4w/E4qiwzqad5buA8vbFJVEliJJXg4EQ/5ybHkYVEfzxKb3qc45FhhIALsXFSUpyD49lnAs7ER3BrFnvGzgFwMjZAhVdj99gJLNvmRLSb1mCQXWMHcn3zZ5gTrmDX2CsYtsGp+DEWhlvYM/4kpm1wNn6ARQVzOBT5Faadpie5m67wak5P/BOmnWE4+RLtoavpn/walp1iMvUszcF7icc+n3X06acp8X8CYn8PJCHzLHbh4wi56E9yjr7p9cbv1kdez04IIR4n69f/Y338/+TtCCG8wL8B77Vte/K/2v4/q//yQv8mveGFtm335f4heEwIccy27Wf/dxvm/hH4JmQXHvk/OMabXrbZyyW7lcTS9132ahJD3ws5P57to9+HbWfIprAkSWQO5PrmbSw7RSxzCN2K5DhNNHOUlDlM3tGnjhHV++Gik0+fYkIfxSbr2UfTZxnNZLJO3obh9HkmDBmTi362l+Rljn4w1Y8sMnlfO5gaImaoeSc/nBpF2L3oOQc/lpnkeLQ37+gn9QTHJvryjj5hZDgU6cs7+oxlcnC8j1TOyVu2zf7Rvt9z9PtG+/MsgH3D/aTyzl5i31B/PitHEhJ7B/rzPeSyEOzp68ufe5IQ7Ovrv9RHD+zt60e+6Ogtm329l1g3Lfb1DuQ5bZgc6B3IO/qkbnCgd+DSiOoGB3oG8o4+qRsc7BvIZ9ukDINDfQMkdSPPBwcGmEynsS/y4CDDiQQWWUd/eGiQnuhE3tkfGRnmQiqSc/Imx8aHGTFzawLYcDwyjKleWrf39OQwbuclR38uPkJaSHkn35McwavG82M6mBrhQsJAzzn58cw4fckzeUcfNyYZTl1y8hkzwXj68GWOPk0ssz/v6G0MMvq+yxy9jWXsR+IiCzD74G1yoX+zHL1t26v+02MIMSiEKMvdHJcBQ//JdirZi/wPbdv++WUvvaH9L6//0tHbtr3Ktu3p/5s/v7x4wNyb+k8PaNt2X+6/Q8AvgM7/6rj/L5RQWxFyLQh31tF77kJWpuTYg9tzL6o6CyHcCOHG77sft2Nejl0U+e4j4FqGJFxIwkll4F6KPRedvYO60J3U+DYh57gldActgauQhQNZaMwI38zM0FaUHM8uuIF5BVeiCA1FaCwo2M6Sos15XlK0mTUll/zsyuIr2Fi2HlWoaJLKmpJVbKtYe4lLl3Bt1Uo0ScUhqawu6eSm2uU4JBWnpLK8eCa3NCzNsqyyoKiZ2xsX4pJVXLLKnMIa7mhekOfpoTLunDofj6LhVlRaAsXcNa0Tr5rlWn+YO6bPyXOF18cdM2fj1TQ8qkqx28Pt7XPwqFkOuVzc3nHpdZ/Dwe1zOvA7NDyaitehcXvnbAIuZ55v7ZpDgceNR1PxODRu7eqg1O/Dral4NI1bujqoCgVxaypeTePWeR00FIVxqyoeTeX2BbNpLSvBpaq4VZU758+lo6ocl6rgUhXumD+HhbXVuNSsk797fidrGhtx5Rz9vfM6ubJlapZlhXvnzmPHtFk4ZQWHLHNfRyc3T+3IscJ9M7u4rWXuJZ4+n9ubF+CQFBySwh3NC7ilflGeb6pfyI6a5WiSgkNSubpqMVsr1+THdH3ZEjaUbcqxxqLCJSwt3oYiNFThYGZwEbMLrs85ege13i6mhG5FFk5k4aTIOZdy/z25z6wLr9aOz3svQngQwo2iTEVy3wHCkz0P5HpQ3yZZN/DHcvQPATtzX+8EfvkfNxDZpL3vAEdt2/67/9P9/2P9oerm4gE/958dUAjhASTbtqO5r9cAn/4Dj/tHKSE05MBnMOPfQ2hzkdSpeAN/SSr2jayj12YSCvwFk7GvoCqzcGgdlAY/xejkl9DUFjzOLqqVcvoiX8Kp1uN3zqdJqUcWKi6lggLXIjzqVCTAKRdS7l1K2NmGbadwSkFqvcspdycxrCiq5KbZvxLT1kmZ48hCYVZ4NZZtEdNHAOgqWINAZjwzgGGZrCheiyxUhlL9pKwU68vW4ZCd9KV6mNRjbK9Yi1f1ck1iCWOZSXZUryOo+bm5bjEDyXFuqVtLgSPAnY2L6U6Mcmv9CircYe6fsohTsSHuaFxGjaeA901fwpFIP7c3L6TZX8IH25ewd7SXO1q6mBos5qOzl/Lq8AVubelkSriIT8xfxgv957lpSjuN4UL+fMlynuo+ww1TZtEQCvPJFct59Owprp4yg/pwmE+tXsFvTp3gyuap1IbDfOqKFTx07DgbW5qpDYf41IaV/PzIEdY0NlJfEOJTm1bx0/0HWdZYR0NhAZ/auIIf7j3AoroamosL+fNNK/in3fvorK5kSmkRn9y4ku+8+hodlWW0lpXwiSuW8a1XdzO9tISZFaV8Yu0yvv7Kq7QUFTKnupKigJevvPwy9eEwXdVVVIUCOJwyVYEAi2traSkqBBXKPF5W1DXQXlaGLhmEnS7W1TezWK8hbqXwq042108lbRlMWnE0SWZr/QxM22QkE0FCcG1dB0IIhtOjmLbF9bXz0CSZodQgSTPDdTVLcMkaA6leYkac7VVr8cgu1peuZkIfZ2P5ZnxqgOXFG5nQR1hadD1+rYC5BdcxmelhduEt+NRSpoVuI6qfoTl4Fx61hqrAe0lkDlEauA9NbcHn+zC6vheP916EOhXb+4Gco7+F7I3n26D+eIuKfA74qRDiduACcDWAEKIc+LZt2+uBhcBNwEEhxL7cfh+zbfvh/2z/16s/9EL/Rt5wCfCLXBSsAvzItu1H/sDj/lHKNocxxm4EO4GdegwTiE1+Buw4RvpRbGExOvlX2HaUFI8gMBic/CqWPYFIObHJ0BP9ZwwrgpTSsOwE52MPkTFHc44+yoX4MySNISShkLHGuZA4SEzvRQiZpDlMX+oCY+lzSEjE9AGGMxMMpk7lsm56iJo23YljAIxkzpGxfJyIHQKgL3U220cf2Ydt25yLn6bIWccro7sxbZOTsZPUe1p5avDVbNbNxDFmBzv4Tf9LOUd/jBVF8/nJhefJWAavjB7jyopFfO/Ms6QtnRdHjnNjzTK+dvwZUqbOM0MnuL95JZ8//CRJU+fpwRN8sHU1n93/BElT58n+k3yibTWf2p3lx/tO8pm5a/izlx8naeg83nuKv+xay8eee5SkYfB49yk+u2gtH306y4+dP8Xnlq7ho08+RsowePz8KT67fDUffeLxLJ87jW6ZfOKxx7P7nzuNZcP/eDzHZ09jA59+8ikSus5jZ05hC/jcM88Q13UeO3sKG/j8iy8Qy2R49MwpLGy+susVouk0zjMKumXynQN7iKSyTj5l6vzLsQOMJpNoskxUT/Pw+eMMJmKokkxET/Hc4Fm6YxMoksRwKs6hiT7OTI4iCUF/coJ+fZSjkaxS6k6MkyHG/vEehICzsSE8Dou9Y9n3fjrWR4VHY9fYUSxsTsbPM9UfYtfYHkzb5FT8FB3BSnaNPY9lm5yJH2FeeBr7xn+HaRucj++lK9zF4ci/YdoZepMv0xm6gjOT38Wy04wmn2V6cAeDk1/EslNEU09SH3wP8ehfgZ0kk3qMosCfQ+yvc330T2IXPoGQC/5Up+mbVoI/TnulbdujwMr/zf/vA9bnvn6eS73db2j/16s/6EL/Bt/wGWDWH3KcP1XZZje/l22TfpX8P/l2Ej2zi2y7a7aPPpXZlcsEsXOLj+zGtKJk++JTxNJ70c2xPE+k95M0BnNsMp46SFTvASxs22QsfYTxzFjW0WMykj7BSCaJlTvmUPo0k4aUX/9zMHWOhOnLc3+qG4lE3tEPpPqIGuT97UBqCMPyksnxSDrC0eh50laWJ/QYBycucdxIsT9ynlSO06bO3rELeUdv2ha7Ry/knbxt2+wavnCZoxfsGurJby8h2DXQ83uO/pX+nt/Lo3+5r/tSH70QvNqbfWL0Yr3S23vJ0ds2r/b2IEtZI6lbFrt6e5BynDIMdvf25PPnk4bBaz09+Zu4pGGwq7c3P0eQNAx29/aSMU3si9zXR1zP5J38noFextMpLGxSpsHewX4GEjEs28Y0DfYO9nE+Op7NmzctDowOcC4xmnfyB8f6idgTeT4S6ceSE9lnHWw4ER3AmzHyTv5MbICELeWdfHdiAKc8kR/T/uQg59V03smPZYbpTR7HyPXNx4xxBlOHL3P0McbT+/JO3rSTxNK7sPLrJmTIZHZlL+pkZ5MsfTfSZX31mD3wNrjQw1sz3uCN1DtZN69TWUdfnvORHlTv7chyfd5Pujx3oCpTc/7Shd97F061Lc8FvrvxORfke5LLAndS4FqOnOOawG2Ue9YiC1e2rz64k3rfhpwvdTAluIOpgU0oOZ4Ruoa20Ka8X50duorO8EZU4UAVDuYVbGJJ0fpcz7TGosI1rC5Zhyo0NEljcdEy1pdlfa5D0lhatJArK1bkHL3G4qLZXF150dFrdBW0ckPNEhySikvW6Ag3cGPtIpw5nh6s4paGBThlFbes0eQv5pamebhkFbeiUesr4NbmTjyKhkfRKHf7uaUl5+AVjSKXh1umzcatqHhVjZDDyS2tHTgVBa+q4VMd3DZzNi41yx5F5da2DtxqdnunonJrWzteTcOrabgUhVvaOgg4HFlWVXa2t1Pozjl7TWNnewelXi+enPff2dFBTTCIJ+fkb5vdQXNBAR5VxaWq3DZ7NjNKSnCrKk5F4Y7Zs+ksr8zzne2dLK2qzT5LoCjc1TaX9XXNuHLPFtw9s5NtDdPzfMe0uVzb0JZ/FuH2KfO4vm4OTlnFKSnc2tjF9bXzcObmSW6onc811Ytw5OZRtlUt4KqKZfl5lSvKFrK+bE1+DJcVLWJF8cbcmDuYHVpIV8FVOUfvpNnXxczQ9cjCgSJclLvnUBfYiSScyMJN0NFGie+unKP34FZb8Xrvys07eVCURiT3rfl5KuRKUKf+qU/VN6/+OI7+j15vkwbY/zslhAMl8HmsxPcRWieyNhNX8O9Ix7+ForWjaLMJh75ANPpVNG0GDsd8SsN/y2j0KzjVFjzOJdQq9fRPfhmnUk/AuYxmZSrnI1/BqVZQ5F6F39GBJrlxKMWUe9dS6FqAImQcSoh6/3oqPQkEJprwMDWwAdM2sOw0slBpD2/Gtm30XCLmgoItICRSRgTTNlhdciWyUIjqY6SsJBvLrsQhu4hkhokaMa4svxK34mY4PcR4ZoKrKzfi13zclFrJYGqM66vXUeAIcFfjCroTw9xYu4pSZ5h3tazkdGyAnXXLqXQX8IHW5Ryb7OeW+sXUeov4+KyV7Bvv4ZaG+TQHSvkfs1exa+Q8NzV0Mj1cyqfnreLFgXPsaOpgariYv1y4mqf7znBdYxtTCor4q2VreezCSbY1Tac5XMjfrFzHw2eOc2XTNJrChfz1mrX86tQx1je00FRQyN+sW8vPjx9hTV0jzYWF/M2Gdfzk8CGW19UxpaiIv1m/lh8ePMCSmhqmlRTztxvW8YP9e5lXWcnMslL+5oq1fGffa3SUldNWVsZfrVvLN/e+yoziUuZWVPDZ1av5xp5XmFJYxIKqaqqCAb6y5yUaQgUsqamlubCAL+19gSpfkFW1DbSVluFzqZR5/FxR38KCymqcDomw5ubK+lZWG43IioVPdXJtwyzSloElMjgkhesb5mDZFhkrhUBwU/0ChICkEcXA5Ma6ZaiSTFSPkLIy3FC9FoesEckMEzfiXFlxJW7Fxbjez6QeYW3pNXgUHxOZbib1IRYU7sCjhplTcDOTmR5mhm/Fq5bQEryfWOYUDcG7calVVAQ+SDJzhOLAfWhKA17/J9Az+/B470bSpmL5PgaZ18C9EyG0P+2J+mbWW/Ai/kbqnQv965RtjmKN7wA7jp1+BNO2iU1+EuwYeurX2DaMT/4lth0lnfo1tm0yFP0SlhUhnsu26Z38PoY1ghAOLCtJT+znpM0hJKFimFG6E0+TNPoQQkU3x+hJ7Ceqn0cImZQxRH/yAmPpUwghETf7Gc5EGEwdB2BC7yFq2FxIZJ38SPo8Fh5ORvdiYzOQOoNDKeFAZBc2Ft2JkxQ66nll7GUsLE7FjlPnmc7TQ89j2iZHJo/QHpzLb/qfQbdM9kcOs7RoET/tfhLdMtk1dpjN5cv53tnHyVgGL40eYUf1Sr5+8jHSpsFzQ4e5p2kdnz/6O1KmztODR3hw6nr+4sAjWSfff5RPzFzPn+/5LUlT59G+o3xm9gY+9mqWH+k5xufmbeBDLzxM0jT4bfcx/nbBRh587mFSpsFvu4/zt4vW8+CzvyVpGDx84TifX7yeDzzzMEnD4Lfnj6PbJh966nfZ188fx7ZtPvLUoyQMnd+eO46NzSeefZy4rvObc8dBwKeef4q4nuE3Z49jA3/16rNEM2l+fTa7tu4X977IRDqN45yMbpl88/AuxtNZJ580df7l1D6Gk3FUSSZupPl1z1H64hM5R5/g+eHTnI+Oo0gSo5kYRyd7OTk5hCQkBlITDGaGORLpQwhBT3IMnTj7x7PPSpxPDOLTDPaMn8DG5ly8hzKXi91j+7GxORs/S7MvzO6xV7CwOBs/wcxADa+NP4Vpm5yLH2RuaDoHxn+NZRt0x3czJ7SEI5EfYdkZ+hMv0hHexNnIP+Qc/VO0hm5hcPJvsO00sdTvqA58kHj0f2b76FOPUBT4NET/AkhB+lHsoicQUvhPdZq+efUWTaZ8I/XOhf71yjx/6Ws7iZl5kWy2jZ2dmMo8D2TIOvUEqfQL2FYix0ni6ZcwrUieo+mXyJhDgIllm0ymd5Mwesk7+dQeJvXzZB2/wWhqP2PpsayTt2EoeZgRPZlf73MweYwJQ8pzf+oUGcuV97P9qTMgJi/jC0R085LPTfWRsRx5Rz+UHuHQ5Km8kx/XJ9kfucQxI8Ge8VN5R58y0+wePZN37rpt8srImbyTt2ybl4bP/l5f/YtDl1gIwUuD5/J9+7IQvNB/Lu/IJSHxXP+5/L5CCJ7rO5/Pj7dteL73HJLIGkjTsnmh5wJyjnXT5IWe8/m++ZRh8GLPhfz+ScPghd4Lufz/S6xb1iXu6yZpGFjY2SC2/m4mM2lMO8svD1xgJJnI9sWbBq8M9tAbn8g7+l2D3ZyJjWbz502L10Z66EkN55x8Nqxs0hrPOngbDo53g5zI87HJXvyOdN7Jn4r1EjUuOfrz8R5kMZof095kD34lgZ5z8qOZAXoTNkbOyceMEQaTezBzTj5tRhhLvpp38qadIJZ+Id83n3X0z2HbiYsnBVbmxcv66AGjG7S3wYUe3rZ39O84+tcrdRpIRTkn70Lx3IwkV+TZ5b4VWWnIO3mf93YcWmuOnYQ9t+NxzEbKcZH3VoLOhXlnX+HfSYl7ec7RO6kN3Ei1d20ud8RJY+BaGgPr8o5+anArrcErUIQTRTiYEdpEe2hd3tG3B9cyr+ASzw6tZHHhmryvnRtewori1ahCwyE5mBfuYl3pxT56B3NCbWwsW4omqTglB7OCU7iqYnHO0TuY5q/j6qpFeWff6Cvnutr5OKWso6/xFHJ97SVHX+YOcmP9XFyymnXyTi87GubgVrIc1FzsaJyNU1bxKhoe1cFNzR045KyTdykqO1s60GQ5l3mvsHNaNjfmIt/U2o4r5/QdisLNrW14VC2//03T2wk4nNnefVXlxultFLjc+V7+m1vbKPP68KhZx79zRju1gayzdykKt85opyVciCfn5G9t7aCtqAxPzrnfNm0288uq83k/t06bzcqKxjzfMmUuG6qn5fnmprlsrp6Rc/QqO+rncmVlR56vqZ3HlsrOvKPfUtnJhvKF+XmTdWVdrCtbiiZpWSdfPJ8VxavRpOwYdxUsYEHh+tyYO5ke6KI9dBWKcKAKF7XeuUwJXpt39MWuNmr8N+UdvV9rpdB7GyLn6J1KEx7P7SBcCOFBlquQPDeBcGXPA6kY1Cl/6jP1TSthvbE/b7V6547+dUoIJ1Lwy9jx74OjE0nrwBP6GunYt5G1DlRnF2H5G8RiX0NVZ+JwLKYkVMN49CvZPnrXCmq1KQxOfhmHUkfIsw6vczYXIl/GqVRQ5FlPwDmf05Gv4ZCLqfRupti1EofkQ5OD1Pu3Uu1N5U5aD62hqzGsDIoACZU54WuxsBEie3e3qOh6BBKmlcK0dZaX3IAsFNJWnJSZZF3pNWiyg6Q5QdSIsqlsGy7FzYQ+TiQT4arKzXgVL2P6GEOpUa6t2kBA9XN7eoSe1AjXV6+hQAtyX9NazsUGuKFmJaWuMO+btpYTk33sqF1KlaeIj864ggPj3dxUt5A6XzGf7LiC10bPsaNuHi2BMv5i7npeHjrLdXWzmREu46/nr+eZgdNcU9dGa0Epf7d4PY/3nGRb/UymFhTzxWUb+O2F42ypncbUcDFfWrmBX505xoa6FqYVFPPlVZv4xalDrKlpYlphCV9du5GfnjjI8qp6pheV8LV1G/nhsf0srqxhVkkZX71iI/90eC/zyqroKKvgq2s38d1Du+koqWBeeSVfWbOJbx58lRmFpcwvr+ZLKzfy9YOvMDVcxNKqOprCYb566GUa/GFW1zQxs7iUrxx8kSpfgPW1U+gqq+LLh56j1O3nyvpWVlQ2UOhyEnK4uKZ+FpuMqfg1Fa/qYEfDXDKmjlMBh6yys2EhpmUiCwOBxG31K0CAbWcwMbmh6goUSUa3EqTNNFsrN+OQNZLWBAkjzoay7ThlJwlzjKg+zsri63ApPuLGIFF9iM7Cm3ErQZLGHUT1HlpDt+FSimkOPUA8c5qa4N04lQrKAh8npR+myHc/mlqL3/+pXB/93UhqM5bvf2QdvWcnQjj+xGfqm1fvqJv/hmVbY1hj14OdgNSvMW2J+MQnsn30yYcAQWTyM9jWJCnxC7BtBqOfx7QiCKFh2yYD0W+jm6MIoWBZGXrjPyNjDCCEgmnF6Uk8SVLvRggZw4rQk9hLNHMGIWTS5igDqXOMpY4jhCBhDDCmjzGYPAwIYnovUdPifGIfAOPp85h4ORndBdgMpc/ikEs5EHkJG5u+5EkKHPW8Ovo8Nhbn48ep9szg6aGnMTE5HjvCrEAXv+l/HNM2OTRxhCVFi/jX7kcxbJO94wdZX7aS7599BN02eHnsIDfUXME3Tv0G3TJ4fvQgd9Vv4u+O/grdMnlm6CDvn7KZzx5+CN00eHLwEB9r3cIn9z9ExjR4dOAQn5m1hY/ueYi0afBI3yH+avaVPPjKL8mYJg/3HubznVfy3pey/Jvuw/z9/C088PxDZEyTX3cf5osLN/PA878mbRg8dOEIX1i0ife/8BtSObax+eALWYf/qwtHQMBHX/wdCV3nofNZ/uSrjxM3Mjx04SiSBH/x2lNE9XTudZu/3/8cE5kU6gUZA5NvH3uZ0VQCVZLRbYMfndnDYDKKKskkzQwP9x2iNx5BkWSiZpKXRk5yNjaCLCQiepwT0W5OTPYjCYmR9AQj+jCHJ7JKaSA1ikGU/ZFTgKAvNYBXNdk7nv27dCd6KHM5eW3sNWxsLiTP0OAt5LWx7JheSBxnur+OPWOPYmHSkzhIe3AWB8b/Dcs26U3uoiO4jGOR72HZBoOJ55gV2sq5yJexbZ2x5JO0hO5gaOIvsO0MseQjVAU+Qjz6SbAz6KnfEg78BUx+GshA+pGcow/9qU7TN6/eoh01b6TeudC/XhnnyI68BaQw00+TzbYxgSR6+mmw01m2k6TST2JZMcDAtg3i6acxzDFAx7Z1oqlnSRt9gIlt60ykXiChnyXr5HXGki8zkck6emyd4eRuxtIjWOhgw2ByL+N6Ip8lPpA8yIQp8tyXPErG9uR7pvuSJ7AZy/vanuQZxjLpPPcmLxA3FTIXv19qAMFR0laWR9Jj7B0/lucJPcbusWOkcpw007wyeokzpsGLw8fzDt+0LZ4fPpF3+Dbw/NDJ3+ujf27wNGkz68BlIXhm4BSmnU3cl4Tg6f7T2Da531wET/eeQQiRZeCp3jNIZNmybZ7uPYOUe123LJ7pO5vfPmUaPNt7Fsh+v6Rp8Gzf2XwWfNLUear3DBnLzPMzfWeIGxkM28IwLJ7tO8t4OpsXb5gWz/WfYTAZzfMLg+e4EBvPHt+0eGnwLCfjg9iAjsmukXP0pQeza8DaJnvGzhKzxvPzFPsjZxEinucjk+fwa3p+HuVk7ByTusiP2bn4OWDosjE9h0eKouec/HC6m564kXf0UX2AweTLlzn6McaSz1/m6CeJpZ6+5OjtJOn0k5f10RvY6WcQXMq+wbgA2tvgQg9v2wv9O47+9UqdClIw6yJxobivR0jFeXa4dyDLVYics/d4dqKpjXlnH/TsxKXNyDv6Au9N+B1zkYQHSbgo9e+gwLU431df6b+Wcs8KZOFGFk7q/Nuo8a1Euejs/Ztp8q/OOXonLYErmBZYhSqcqMLJtMBK2oIrs45ecjI9sJTOgixrkpNZgQUsLFyBJjQckpOZwTksK1qW870OZgRmsKZkCZqk4ZQcTPU3ckXp4ryzb/BWsbl8Ud7ZV7lL2FIxH4ek4pYdlLlCbK2al3P2DgocPrZVz8Upq3hkBwHVxfaa2Tln78CjaFxd245TVvAqGk5Z5dr6DjRJxqs40CSZ6xvaUXNOXpVkrm9sQxUSXlVDkWSub2rLO3xNlrmuOZsrk83El7m+aRYe5ZKzv655Fn7Nmefrm9sodLnxKBouWWFHczvlHn+eb2pup94fzvONzR1MDRXjUbKZ+zc0dtBRWIn7Ml5YUpdjlevqZ7OibApuOcvba2azumw6rhxfWTWH1aVtWZZUNpbPZXXpHJyShlPSWF0yl+XFXThyY7KkcC5Lipbkx6wz3Mn88Eo0KTfGwU5mh9flx7zZN4dpwc15R1/hbqPBfzWycKIINyHnNMq8N+QcvQe32kTYc3N+jQVNqcXtuTnn5L3IUinCfR3ZNRo8IIVAbf7TnqdvUl18MvadNWP/m5UQLqTAN7GT3wd1HpJjHu7wd0jHvoWizUZ1LiaofId49Ouo2iycrhWUqs1EJr+Epk7F61pLjdbO0OQXcCj1hDyb8Drn0zPxJRxKFUWerQRdKzgb+QqaVEyl7xpKPes5OvZ1HHKQxsD11PrSuGQ/quRhevgmTMtAk5zIQqWj4BZs20KVssM4v+BmEBISNiY6S4puQpIUbDtD2kyysvR6NMmBbqeIG5OsK70ap+wiZcWYyETYVHEVHtlL3JhkMD3M1orN+FUfE0aEvuQg2yuvIKQFuadhI+cSfVxTtZpiZwEPNG/iRKyb66pWUO4u5MOtGzkYOc8NtUuo9hTzyZmbeG3sLNfWLKDRV8pftG/i5ZHTXFs7jymBcv567haeGzrJ9prZzAxV8IWuLTzRf5ytNW3MKCjja4u28HD3UbbUTGdGYRlfX3YVvzp/mA1VU5lZWMY3l1/Fv509yJqqZtoKy/nmiq389PQ+VpQ30lZUzrdXbuWHJ/ewuKye2cWVfGfVVn5w/DW6SqqZV1rFt1du5btHX2VOcRULy2v49oqr+NbRV5gZLmNJRT31wTDfOPIiU4MlrK5qYkZBMV87+gINvkLW10yls7SKrx15lipfiCtrprO0rJ6vHXuaUrefq+vauKJqKl8//gRhh5cd9Z0kzXaKnC58ipOdDYvRTZ2gpqHJKjtrV2LZJm5FQiC4oXo9AlCFjWlbbK/cjCLJgE7GSrO5fBuqpGLaSRJmjNUl1+KUXehWlJgxzuKiG3HKXjJWhJg+yOyCnTjlEGlzmLh+gZbQnTjlIgzrA8QzJ6gK3odTKafU/CQp/SAF/vvRlBq8/s9g6Htxee9GUhqw/J8EfTe4diKE6095mr6pJay34FX8DdQ7F/rXKduKYI1fn/21NfkQppBJRD6Obccwkv+OjUxk8lPY1iTJ5M+xbYmRyb/BtMZyizFYDES/hWEOg5CwbYP+2L+SNrNrwNp2it74YyT08wghYdpR+pN7mEyfRAiBbo0zlDrDWPoIIEibI4xlxhhI7gMgbgyQME0uxHcBEM10Y+LhZPQlwGYsfQ6HUsrByLPY2AylTxFyNPHK6FO5vvoT1Hhm8vTwY1i2xen4UWYEunh44GFs2+Z49BCLCpbzs95fYdoWBycPsq5kLf984ZdYtsXeyAG2VWzim2d+gWmbvDJ6gNvrruTLJ36OaVu8OHqAB5q38TdH/w3Ttnh2eD8fnrqdzxzK8lNDB/jzGVfzZ/t/hmmbPD5wgL+cdTUf2PMzTMvikf6DfH7O1bz31X/N89/N3c4Dr/wcwzL5Td8hvjhvGw+8lOPeg3yhayvve/nf0S2DX/cc5IvSVt738i/JWAa/6jmELMFHdv2GlGnwUM8hFFnwP/b8loSu8+veQ8iS4LMHHiOmp/lVz0FkWfCFw08xnknyqx4JhMW3T77AaDqOLCQsTH564VUGkpPIQkK3dB4dOEB3YgxJCFJmilfHjnMmNoSEIGbEORU/x4loLwKIGBOMZIY4MpFVSmOZMQx7kgMTufyi9BAuxWRfZD/YNgOpHkocLvaOv4wN9CfPUu8pZs/4k9lnJ5LHafE1snf8V9jY9CcPMMM/m0Pj/4KNxWBiFzODKzkZ+SY2JiPJ55kWvJYLkb/Btk0mUk/SELiP4YlPgm0ST/6OiuDHSUz+D7AN9OQjBIN/AZN/DpiQ+l3O0Qf+uCfn/416x9H/Ny3jDFk/rwM6ZupxbDJ51tOPZidqyYANqdQjWHYEyGDbGRKpxzDMoew+NkymHidlXACy2SmRxFPE9ZNkHT2MJp4lknf0MJR8kdGLjh4YSLySc/RZ39qfeI2YKfL+tTexP+fos9yTOAzSYN7X9iSPM5RJXMZniJmQsXLfL9WDzQEyOec+nB5mT+RA3tFHMhPsGjuY55iR4OXRS5wyM7wwfDjv6BXL5LmhS6zaCs8NHc335TtshWcGj5Gxso5eQ/DU4HFM20a3LTQUHu8/hm2DbluoKDzen31YTLctZCQe7z2OJAS6bSFswRN9J5DI5txYwuax3hOIHBtYPNF7Mvc0sYmOyRO9JzEsC9020U2TJ/qOkzJ0MlZ2LubxvuNM6un89k/2n2A0Hc+//tTACfoSuawaTJ4ZPMGZ2HCuMz87J3E2cSlT/+WRkwzp/VlHD+waPUnSGsv/TPaMH0eV4mRyfGjyBD5Fz4/JiehJIhk57+jPxk9h2X2XjekpNBHJfwaG02fpiesYOSc/qfcwmHwOM+fcU8YQY4kn8o5et8aJpX53maOPkUk9epmjT2OnnkBwcU1ZDYyzoLX9r+fPW7DeilrmjdQ7jv71SmnJ59xkHf327BOAOSfvcF+HJJfmHb3bvQNFrrnUV+++HqfaknP0LsKe6/E62vKOvth3DSHnvJyjd1Hm20pxztnLwkWVdzMVnqU5R++i1reeWu9yFOFCES7qfatp8i9DFS5U4aLJv4ypgWVZZy85afYvYlYwy5rkpMU3jzmhpXmfO8XXzvzwRd/rpNk3lcWFi/P+t8HbwLKiRXlnX+UuZ1XJ/LwvLnEWsq5sft7ZFzgCrC/vzHNAdbOhYm7e2XsUBxsqZueycRw4ZZXNldm+eY/iQJVktlS1oQgJj6IhSxJbq9uQpRwLwbaaNuSLrwuJbbWXWJFkttXOQpFkPIqGJilsq5uJI9fH75RVttfPymftOGWFbXWzCGiuPF9d10aRy5tz8irX1LVT6Q7k97+6tp0GX2HewW+vaWdasDzv4LfVzGZ2uDbPW6o6mF/YnHfyGyraWVg4Lccaa8s6WFg4K+/kVxTPYX5BB07JgVNysLBwDvMK5uGQHDgkB3PDc5gbXogmOXLzLLNpCy7LO/kW3xxag6tzz1K4qPG00xTYkJvXcVHsnE6198pcnpIbv9ZMifeafLaNS6kj6LkBkeubV+RynJ5LTl6SChDu7WTXTfaA8IPy9nD0wDtZN/8dS0gepNA/Yie+j9DmITkW4Q7/AD3+LWR1DqpzOSH5hyRiX0XRZuFyr6VUncZE9Cto2hR8ni04nfMYmfgimtpI2Lsdn2s5fRNfQJOrKPJeR8h9BeciX0aTi6ny76TMu40T419Bk8M0Bm+jzkpxaOwbqLKHqcE7sDBwKwEkoTArfAdg45CyjrSz8HZAoEkqpq2zsGgnEgoykLaSLCvegSI5EJjEjElWl16HU3JlV7fKjLG+bDsu2UPGSjCSHmZj+ZX4FD8pK05faoAt5RsIaSHiRowLiT6uqlhHoTPM/U1XcTJ6nqsrV1PiKuQDU6/icOQs26uXU+ku5qOtV7Fv/AzbKhdR5yvjkzO3smv0JFur5tPsr+Czbdt4YeQ4V1bOpTVYxd/P3c5Tg0fZXNlOW7iaL3dt59Hew2ysnEV7QRVfX3A1v+k5yBWVrXQUVvIPi67mlxcOsKZ8CrMLq/jukmv517N7WVbWxNyiav5x6TX8+MxrLCppYF5xDf+49Dr++dQu5hXXsLC0ju8tvY7vnXiZ2YXVLClr5Lv+MN858SIzQuWsKG9mSrCYb514nimBUtZVTaO9sIJvnXiWBn8Rm2tmsrCknm+efIoqT4it1e2sKmvhm6eeoMQZ4LraeWysnMV3zzxKUPVwU90SkuY8vnf2t3gVFztqVmHYBkUON5qscl3VemzbIqA6EQiurtoMgFtWMW2TLeVXIQsJVRJkzDRXlF2DKqlIwiJpRllWfCOa5AQ7Q8wYY37RThySF8uOE9MHmFVwOw4piGlHiWfO0Ri6B6dShGmNk9CPU+G/H4dajml9ilTmAGHfu9HUKuxAztF77kZS67ECn4HMrmzWjeT+k52jb3a9Xe/o37nQv07Z1iTW2A1gp7CTv8QWDlITHwUrjpn6d5A0Jic+iWVNkE79HIHKyORfY1mjxJMCbIWR2DcwjAEQAmHbDMT+hbRxASEkBDr98UdJ6KcBCdtOMpjcxWTmKAKBZU0ylD7NWGo/INDNMSb0UQaSWSefNodImCbd8RcBSBj9OUf/LGAzoXfjkEs5GHkCsBnNnCGkNfPqaHY5gMHUSarcbTw78hts26Y7eYzp/gX8buDfc/n1R+gMr+Tf+/4NbJsT0QOsLN7AT3r+FRs4OLmfq8qv5PvnfoqNzb7IAW6u2c4/nP4JNja7I/u4p+F6vnDiJ9jAi6P7eLD5Bv766L9gY/PcyD4+Pm0Hnzn8Yyxsnh7ax6dm3MjH9/8IC5snB/fx2bYb+ODeH2HbNo8P7eev22/gwdd+jGXbPDq4j893XM+Du3+CaVv8bmAffz/nOh7c/VMMy+KRgf18XrqGD732b2Qsk9/2H8Ahy3xs7y9ImwYP9+/HIct85sCvSBgZfjuQ5b8+8jBRPcVv+/filCW+dPxxIpk4v+0XqDJ878zTjKRjSIMghM0vel5iIBlBCLAxeXJoLxcSwwgEBhn2jh/hdKwPgSBtJTkbP8fx6HkEEDdijOuDHJk8AUBUj2DYUQ5OHAQEEX0Yl2KxL7IbbBjN9FHscLNv/FlssmsQ1LhL2Df+CDY2w+mTNHla2D/+s+yYpw8x1TeXo+PfByzGU7tp8a/jdOTL2NiMp16kJbiD3onPAjbR1DPUBt7DyMSfAzaJ1OOUBT9BYvLPwLbJpH5HMPA5mPiz7EmSuph14/tjnJL/9+udC/3/WkKIq4FPAlOBTtu2d/8n260DvgjIZBck+dwfctw/WhmnyObNZ32klXwY7FSWbdCTD2PZ0Twnk7/Bskaxcz40nvo1htGbd/TR5MOkjNNk++ghkvgdscxRLn66RuOPE8n11QMMJZ5mNDN8maN/jkkjke+B7k+8TMwk7197E7tI294898T3glSInuPuxCGGUhN5n9udOE7UMPOOvi95Dsty5Hkw1ceeyGt5HsuM8erYnryTjxpRXh7bm2dBkhdGLrEsJJ4d3pf3z4qQeHb4wGUs88zQobyjV2WZpwYPYtpZZ67IDh4fOIRt26QtA7es8UT/YQDSloFTUnm8/zAix5qk8GhfbuLaMpCFxGP9R7Bzrwvgsb4jWLnvB/B4/1EylpHnx/oPkzAyeX60/zATeuLS632HGU5H833uTw0cpvdivjzwzNBhTsX6L3P0hzmfvJD/SL08eoSRzCVHv3v8MClrLO/g944fRpZi+Z/hockjeBU9PwYnoocZz8hkcmN4Nn4E3TyfH+OexBEUeyT/GRhKncAvJfNOfjJzlqHEE3lOGn2MJR655OjNYaLJhy7Lupkkk3z4kqO3ZezUI5c5egWM028PR2+/NeMN3kj9oY7+ELAV+N8u9A0ghJCBrwJXANOA64UQb41FJpUmEE7ADTiRXFchhD/HLlTXViQpnMvmduFyb0eWy/OO3uu6GlWtv5RX796GW23NZd24CHu34nd05LnYu4kC5/y8oy/1rqPEvSCXfeOiwruGcs+ivKOv8iynxrs4zzXexTT6Fuf76uu8XUzxX+J6zxymBxeh5hx9vWcmbcGFOWfvoNbdzJzwgjxXumvoKpifd/YljhIWFXblOayFWFo0L+/s/aqXFSWdOdZwyy5WlszJOvtcNsuq0o58Vo4qKawubUeTFFyyhiQkrihvR5akHAs2VLQhCQm3rCEQrK+YhUBkWQg2VsxCiCzLQrCxciZSjlVJZmPlTJTc/g5ZZWPVTDRJwZ3LltlYOQOP4sg79U1VbQQ0V543V7ZT7PDls2g2VbZR6Q7nnfsVFW3Ue0vzvK68ndZANa6LffBl7bQHG3N98hrLitvpCE3NOXiNRYXtdISm53l+YQftofa8k58daqctOCfn5B3MCHQwIzAfTbo479LO1MCSS2PuaafJvxIlx+WumdT41uX65l2EHFMp82xEEi5k4caj1lHguSrn6N04lEr87mvyjl6WCnG6t5F19G4kEUC4tmSZ7OcepfFPeJK+efVOH/1/UrZtHwXyK/b8J9UJnMqtNIUQ4l+ALcCRP+TYf4wSkg8p9E+XHL1zGU75R2Ti30LW5qC61hBQW0jGvo6izsLl3kSp1sFE9Eto6jR83u24nIsZnfwCmtpEyLcDr/sKBib+Dk2ppth3C2H3VVyY+CKaXEyF/y7K/DdyavyLaFKY2sBd1AXSHBv7CorkpTl4NxY6B8e+gSw0pofuwsbCLWdb2zoK7kQg4ZLdmLbOvMJbkVBxCI2MnWBR0U5kNFQhkzAnWF50I5rsRBYWE/oYq0quwa34sGyd0cwQV5Rux6P6Ma0MA+k+1pdeSUALolspuhPdbCzfQIGjgJSZ5EzsHJsq1lLiLOL+pqs5NnmGLRUrKXeV8MEp17J/4iRbypdS4ynj463X8trYCTZXLKTBV8GnZlzHS6NH2VQ+jymBaj7Xdh3PDR9hfdlsZoRq+XzH9Tw5eJC1ZW10hOv40twb+F3/flaXzmR2YR1f69rBr7v3sqJ0GnML6/hm1038ons3S4pbmFdUz3cW3sRPz7/KwqImFhQ38I8Lb+bH515mbmEdi0ua+fb8nfzw7Au0hWtYVtpCo6+QH5x9numBClaVT2N6qJx/PP0MLYFS1lfOYm5hHd878yR13mKurJrD0uIWvnfmccrdBWyvns+a0pl87+zvKHYGubZ6CZsrOvmnc78lqHq4pmoVGUvnRxd+hVtxcU3lFei2zs96HkKVVLZVbMLGpkD1AYItFVcB4FPcWLbJFWXXICPhyj0PsaLkBhRUVCGTMqMsLLoZVTiRsUkYo8wpuA1V9oKtkzD6mRa6G4cSBNIk/j/2zjtMkqrq/597K3bunrizOee8S85JgoBgziIqAgJiQEVQMKNixoQBA4iggCA55102sIENbGJzmtg5Vbi/P6qmZ+CnyPuCKPvueZ5+Zr59qyudqtvVn3vuOc5mxqTPx9JbUapEpb6OjtQFmHoHSuWpO8+RTlyAoY8A9Q2c+lLs2LlIY8xLGH38P3aPvuam3oC9+Cuw14PRDwO2D9I7gIP+2cJCiHOAcwBGjhz5792zf2HKL+D3vh8ooyp/Q4ko1dwXwC/iVW8DEaWYuwLfz1LnFgQRegtX4ftdVCoKsOgp/hzX20kwY1yns3gDNXdL8PSAoLN0DxUnCBkUymVvdRH52spg+1Tora2ntxoQMV/lyTo97CkHTN7xeqn4DtuLjwEBs/eJsyH/AAAlZxe23sGq7F0A5OtbSVuTWNwT1HDvqW1iRHQuT3b9FRB0Vp9nYuIoHur8MyjYUVnL/MyJ3L3nTwBsLq7iqNa3cOvOPwGC9YXnOHXo27hx+w0IYHVhBe8Z8R5+t+V6BLAyt4yPjPkAv3jhDwgEy/qe5RPjz+LHG/4ACBb3LeUzkz7Md9b9HhAs6FnK5dPO5htrfg/Ak91L+Or0j3DFc78D4PGuZ/nGzA9z6crfoRQ80vUs35l1Fp9f/gd8pXikaynfnn0Wl664Htf3eLhzKd/WP8hlK27EUS4P732WqP4+vvLczdR8lwf3LiWhm3xzzV8puzUe7FxKwjD44bo7yDsVHtq7mJhh8MuN99DrFHmoUxHVNG7Y+hBd1RzsBVMK7tr9BLsqPQCYGjzetYhtpT0AaMJjRW4Vm4oBvvFx2FrexLrCRgBcv0yfs4fV+QBJVb08ShVYmVsKQMXrIaIpVuSeAqUountpNmOs6Hsg9Ol2hkaGsrLvbwBk6y8wLjaZ1X3XA4JcfQ3jE4eyIfsLAHK15YxPvJmt2e8BUKgtYmzyg+zJfh2BoFx7guGpi8nmvgwIqtWHaU9fSSV3OShBqfoQidRVkLscEFB7ENXywD7T2b8Rn9Zfif3Ljl4I8SAw5B80XaaUuv0VbOMfPe7/09OplLoWuBZg/vz5/9nT7m4Aag0+6VfuAFUCykGKj8rfwrj5IFd3tXIbvr+3wejL1dtw3K0EOeuhUPkbVWcdjTj60h2U6qsZYPR3vYjRd5Xuo8/ZiwoZ/d7yQ2EcfbA/u8qPUfYUbqh3lp56EaPfXnoGMYjRbys/y55a9yD9HHmnOigGewNVz2jw4D2VbTzLUw3dXd/L4r4FDZ6cdbIs7H2moXFLPN0zoAWCJ7oXN2LCpZA80bWkwegDhv8sTsjoNc3mkb3L8JSHozyimsWDe5/Fx6fuu0Q0kwf3LEcBVb+OJQ3u37McUFT9OobUeWDPcpRSVH0HDckDe1bgK5+q5yCAB3evxFEeFS/Yx/v3LKfqOY1Y//t3L6fgVhr5e+7fvZyeeqGxzw/sWc6eah9OyOgf3ruMreW9Deb+yN5neaG0vcHon+haxo7q1sYFv6BnGX3OzoE4+r5lVP2eAUafXYYhio1zviq3jJjuUPcDn60rLKPF0Bo+fKG0jIq7aRCjX46mdg1i9KuIiuIgRr+OrrJoMPmKs4W+8t9QqhLk43F3USrfOsDofaiX/zaI0QtU9c4BRq9kMJa1jzD6fXUw9l8yeqXU8Uqp6f/g9Uo6eQie4EcM0sOBXf+bnX3dTZ8AGAQ80kZGTm3weIigR96CFKmgXUSwImcgZRsQQYgIUfsMDH1EWG8zQiJyOrYxESkiCBElHTuVmDkz5KMRmmInk7bmN3RL9ASaIwc1GH175BiGRA9u6I7oEQyLHtpg9MOihzIqfkgjF87w2AGMSxza0COic5iYOKTBc0dEpzEldUgjf/3QyHhmpA/GFBaGtGi3RzAnc0iD2TebbczPHBzmPjdJGSkOyhwYaGES1aIc3Hxgo93WLA5rno8Val1oHN4yN6x/GjD5w1vnYEgdSxoI4Oi2gMlb0gDguPbZSAKtgGPbZwJgSwMhBMe1z2poDcFxQ2aCCLQuNY4bMhMpJLY0MKXBsR0z0YWGHdZcPW5IEGffr0/omE1ctxv54I9vn0nGjIf54A2OGzKLdivdaD+mbTYjom2NcYmj2+YwLj68oQ9rmcXkxLiGPrh5FlOTk7DCMYv5mVlMS05rMPnZ6dlMScxqnPOpqdlMTs5r6AmJWUxIHtTw4ejYLMYmDsMIfTwsOpNR8aMbPm+1pzE0dnzjmkmYE2iNntS4xiLGSDLR00MmH8HQhxCLnhFoIkiZwYicHua6Cbi9sE8F7PBl7TOMHvbno381thiYIIQYA+wE3g2893XY7qs2IRPIpj8FjN44CGmfQEQfh1P8FdKcjxE5hYQxjWrI6O3YmRjWQRSKP8LQpxGPv4eIfSy9hR9i6uNJJ84iHj2Nztz3MfVRtCbPIRN7F7tyP8TQhtCR/DjtyRJb+n6EITOMTJ3LaGps6PsxuowzLnUuCpc1vT9DCoMpmfNQeMR7WwGY0fRxBJKolsZXLvNaPoJEx5Yx6qrCwS1noRFMtKl4OQ5v/SCmjGAIjYLTw1Ft78XW4kigr76X49rfRcxIgnLprO3ihCFvJ2mk8amzs7Kdk9pPJ2M141Fnc2kzJ3e8mVarFdevsb64kZOHvImOyBA+4b+X1fn1nDLkWIbHhvLpSe9nRXYtJw05ijHx4Vw65f0s6V3DiR2HMjExiiunf5Cnu5/jTUMOYmpqDN+Y9UEe61zB8UPmMzM9jqtnn8WDe57lmPbZzGuawPfmns19u5dwZOsMDmyeyI/nnc2duxZxWMs0Dm6ZyE8P+Ai37VjAQc2TOKx1Ej8/4KP8dfvTzGsax5FtUxkda+GmbY8zMz2Go9unMzExhBu3PcqU5EhOGDqHGZlR3Lj1YcYnhnHK0AM4qHkiN2x9gJHRdt4y/FCObJvBjdvvpcNu4czhR3HCkHncuO1uWq0MZww7nlPdI7h5x99JGUnOHHYSNb/GLTv+RlSL8Jahp+Eql9t33YIpDU7tOBMfn/t2/wUQnNTxDgSQNlJ4yuP49vcikcS0OI5f5Yi2D6BhYkubmlfgoJYPo8sIhjAou93Mav44howhhaDs7mJi+jwsPYMQPmVnMyNTFwSMnjpVZx1tyQsx9Q5QVerOSpKJCzD0kUAFr/4sZvzjSH0Mvvo6OPseo38jduKvxF5teOWZwE+AVuAuIcRypdSJQoihBGGUpyilXCHEBcB9BOGVv1VKrX7Ve/46mPKL0HcWQpWgcge+TFPNfQ6lclC9DWQqZPRd1Mq3gEiSL3wbz9tNlb8iRJy+4k9x3K2U8BEiRk/pemrOesBHEyad5Xso1Z8DFEJIesoLydWWBBqPbH09PZWnCdIi1Cg4newpPxLsnypS9R22Fe8DwPX7QkZ/JxAwe0sfyqq+WwBB2dlJ2prEst6bEEDB2crQyDwWdd8AQF99E+MTR/Fk1x8RCLpq65idPpmH9v4RIQS7Kms4tOVM7tn9e4SQbC+v5IT293Dbjt8hhWBzcQVnDP8gf95+HQLB+sIy3jfyI/xua6BX55/lY2M/yq82/waJYGVuKReM/zg/3fhbBIJns0v47KRz+f76XyMQLOlbwhcnn8tVa38NwMLeJVwx7Vy+vuaXKAULehfz1enn8tXV1+IrxdM9i/jq9HO5cvWv8ZTHk92L+brxMb66+vfUfZcnuheRND/KVWuup+rXeLz7GVKGzQ/W/5miW+GJ7mdIGxF+/sJfyNdLPNG9kLRp87vNd9BTy/FEt09SN7ll533srfbwJIqEbnDf3kfZWdmLQhHTdZ7uWcCW0naCyWywKr+SjcVNgMKQHtvLG1hXWI0ChKiTd3axOv9s6NMynsqzKheMw3gqhyUVK7MPhT7tocmM81zfHQBU3N102MNY23dj4GN3CyOj01mXvRYQlJwNjIkfxgvZnyAQlOrPMTr+FrZnvxssX3uWkcmz2JPrZ/QLGJb6NLn8lwFJvfYkzakrAkaPwKk9SiJ9FeQvByGh9giq5T6EjP3b7sPXzRT7B2P/kSmlbgNu+wfv7wJOGaTvBu5+Ndv6j5i7PmCTYb1Mv3Jr0MmrUtBc/gu+39Vor5VvxvV2hLH2UK7cTN3ZSD+jL5ZvolpfSZDPHrKlv1IYxOi7i7eRrW9s6K7SHWQHMfo9pbspuIUBRl+6n7KvGnpH6WHqKt5g9ttLj4NobfDabcUF7K3uaOitpSX01fMvirMve36D2e+ubMLnkUAr6KrtYGnfY0HucwV99W4W9Q5o5eZY0P3kIGYveLL7qRcx+ye7Fg5oIXi86xkc38FHERE2j3U+g6c8XOUR0Swe7lqEr3zqysGWFg/tXRQy+IDRP7h3UZBb3q9hCJ0HOxfhK0XFq4eMfgmO71HxgmN6aE8wRtDP6B/Yu5iyV6EaMvEH9j5Drl5sMPoH9jxDd62vwegf7FzErkpno2brI13PsKW8E08FPn2kcyFby5sGGH33QnZVtzQuqae7F5JzduCH18CS3gXU/e5GPvll2QXoFBtMflVuAVHNbfhofWEBTYbe0JtLC6g4qYG5FKVnUN62xlyLruoSLHobTD5XW0WX9Bq67Kynr/yXBqOvu9solW9qMHrP30O9/NcBRu8LVPlvAaNXgVdxN+wbjJ7XZzBWCNEE3ASMBrYA71RK9b1kmRHAHwjGR33gWqXUj8K2K4GPAV3h4l8M+9h/avtz3byc6eMIfoRYBIz+TSCsQIsImn0KQsQb2oycEsTVYyNElIh1MrrWEeb2jhKzT8LUxyLC9kT0TUSNKQhspIiSiR5LwpyNFHbA7KPHkLbnNnRz5HCa7QPCPCURWiOH0B7p1zbtkQPoiB4Q1pi1GRKZy4jYgQ1eOyQ6k9Hxgxo1Z4fYUxiXODDkuxZt1hgmNrRJk9XBlMSBGNLCECYpo5npqQMxpYUuDGJ6gpmhNoSBLSPMyczHlCaGMDCkwfymeQ2tCcn8pjkNLRAc0DQLXeoYInjmOKh5NprQMISOUnBo82yEEGG74tDmWSgIUzMLDm2ZhVIKQ+hIITiseRaKQOtS47CWgOmbIhgHOLRlBlKIhj68ZSa61Bv6iNZZRDQrrKNrcmjzTOJ6FFPqDZ0xU432gzIzabeaMUWgD2iayYjo0Iaem5nF2NiYxtyDWemZjItPwAzr+E5LzWRcfEqjru/kxEzGxqc3xk3GxWcyJjanoUdFZzAqdkDDh0MjMxgeO/hFTL4jdnij7nDanEzboLrEMWMMTZETkCKKwMbSh5KMnBSOI1noWgtR+5Qw9bCNEEmMyMnhuJQVXMv2m2jweXTQx76+9+W/016fXDdfAB5SSk0AHgr1S80FPqOUmgIcDHziJfOPfqCUmh2+/uVD9P4UCC9jQqZQTTdA+Q9gHoi0T8bWJuKWfoU05mFE30LKmEW19HM0YyZ27F0Y5qEUi9dgGFOIxT+EFT2RXP6H6Po4UvGPEo+9ja4wjr4p8XEysQ+EjL6dIcnzGJIosC37Q3StiRGp8xnpV3ghGzD60anz8HFZ33cNEpMJmfMAWNP3MwCmZs4HIK634as6s5rPQaAT09M4fpl5zR9FlxYRLU7Fy3FQy1mYMoYlLUpuD4e0fABbS2BInb76Ho5sey9RLYUmBN31nRzV+k6SZhPgs7e6jaPazqTJbAU8tpdf4Ji2U2m1h+ArhxdKGzi+/RTa7Q485bAu/zzHDzmBYZHhnKvOYnV+Nce1HcOo2CgunvhhlvU9x7FtRzA+MYZLJp3N4r7lHNN6KJOS47h86kd4qnsZR7XOZ3p6EldM/xhPdC3h8Ja5zM5M4eszPs7DnYs4pHkW85um8u2Z53HfngUc2DSNg1umcfXs87l715PMbZrMYa0zGBpp4u+7nmBmegJHtM1iVKyd23c+wtTUWI5qm8uExHBu2/EQExKjOGHIQcxMj+fWnfczJjackzoO48Dmqdyy416GR4ZwcsfRHNE2l1t33EWb3cqbO47nhPZDuXXnHTSZGU7tOJmKdzy377qVhJ7klI5Tqfs17tz1FyJalJM73orj17l/z80Y0uSE9nfgK49HOm9ECMExbe8Jfwk14yufI9o+gECS0DM4fjVk8ia2lqTmFZjT/FEMGcWUUapeN1Mz52HIBFIYVN3djM2cjymbEEKj6mxmePpCTK0tmF3sPE9L4kJMYxjg4TgriccvxDBGgnLw6s9ixcNcNzhQXwTRsxAy+R+5P19r658w9TrYW4Cjw/9/DzwKfH7wAkqp3cDu8P+CEGItQaj6/2r+0f6O/mVM+WXo+xiofMjoW3Fynw9qyVbuQGjtlHNfxvf34JRvQ8p28vlv4XnbqFY8hGgmW/wZjruBgMk30Ve6nqqzKtAySU/5Tsq1Z1H46MKmt7qQfPUpQKELnWxtHT2VRwCFRFF0O9lTupeA6dep+Q7bCgGvVaqMT4xNub8iAM/PYepDWJe9AYHA8TpJmpNZ3RfEsVfdnbRHDmBZz+8RSAr1LYxJHMvC7t8hkGTrm5ieOpXHu36HFJKu6joOan47D+/9DVJo7Kms5ui2D3D37l8HzL6ykjd3nM0du36FFJKt5eW8fdi53LztWqSQbCw+ywdGn88N236BRPJ8fgkfG3sRv9vyCwSCtYXFfGL8xfzyhZ8jEKzMLubTkz7JTzcGX2Qrcwu5ZNKn+NGGn4FSPJt9hksnf4rvrfsZPj5Lep/hsqkX8d11P8dRLkv6FpAxP8nV666l5tdZ3LeQZjPGjzZcR8Wtsqh3AS1mjF+88EcKTpFFfQtotRJct+VPZOs5FvU9RauV4M/bb6G71s2iPkWzGefvu//O3uoeFvcp0kaEx7ofZEdlO0opMqbN4t6n2FzaiAoZ/vrCMjYW16KUIqpJdlXW8XxhOaAwpSLv7GZNfgFKKSQOvsqxKvdweBWWsYRidTgXwlM50kaCtdmbAYHjd9FqjWRd9vdBLh1vF8OjM3kh+0tAUnW2MDx2FFtz1yAQVJz1jEycye7cd8P25xiWOJue3NcASb2+lPbUZ8nnrkAIHae+iHTqCir5ywENt/408fRV+LnLQGhQewLRcu++kdhMqf9J4ZEWIcTglC/XhqHhr8Taw44cpdRuIUTbyy0shBgNzAGeGfT2BUKIDwJLCJ78+/7RZ/ttf0f/cuY+D6rQYPJ++WaU3zuI0d+I7+8eYPSlP+K6m+nPjVOp3EDdWcMAo7+eSn0pwa8yyBZvoBgOxAL0FP9MzhnE6It/IefsGcTob6Po5gcYffEOKj4DjL54D46KNvS24gNI2dzgtduKj2LqmwaYfekpeuvdjdzl28vPUvTqDb2rshZXGYFW0FnbzNK++4OatGGCrWd6H2gw+ly9h2d6H25oXHi6Z0ALBAu6Hx9g+Aie6n6Cul9vMO3Hux4PGb2LLW0e63wyjKt3sKTFI51P4iuPml/HlAaPhO1Vv4YudB7ufBpXuVS9KhLJw51PU/PrVLzgmB/uXEDFq1Lx+/XTFJxSg9E/tPcJ+uo5aqF+eO/jdNa6Gvv8cNej7KrsbDD6x7ofZ0t5c4PRP9b5KNsrGxrH81T3Y3TWNjUuqYU9j5IfxOiX9j1K3etpjIsszz6KLgbGTVbnHiUqBzP6R8noRsOHW4qPUqw3NXy8s/Q4vrthgNFXnkZTXQ0mn60tJSKqA4y+vppc6YYGk687GymV/ghUUQo8bwf10o2NcSffD+4DGowecNeBOYd9wl75E323Umr+P2t8uflH/5PdEQEbvgW4WCmVD9/+OfA1gr39GvA94OyXW89+Rv9ypo8h+EGnAzbSPpYgrt4IGL11PELYoY5i2CcgZRIwQUSxrOPQtFbARIgIEfs4DH04AhMhosQjx2DpExBYQS6cyFHEzOkILKSIkLIPJ2HNRIY6bR9CypqNFBZS2DTZB9Jszw21RbM9l7bIvJDZW7TYMxkSmT9IT2VYP8PHpMWayIjY/JDpGzSZoxgdnx9MoRcGKaOdcfEDMISFJgxieoaJifmh1rG1GFMS8wKNhiEtpiYHtCZ0pqfmYQgTDQ0hBNNTszGliUQDFDPSMzGkgYaGQjE7PQspZEPPSQeMvl/PbZqJAjQ0QDAvMxOFQkNDCsn89Ex8FWhdaszLTAdAQ2JJk3mZGQhAE1rI0GegCdnQ8zIzMaWBHurZ6RlENLvRPic9i4SRQBcBs5+VmknGaEIXOqa0mJGaSbvd0dBTkzMZFhmNLgxMYTEpMYMR0XHowsAQFuPjMxgRnYguTAxhMSY2nRHRaejCRBcmI6LTGR6diS4sNGEyNDKNoZG5oc9MWu1pjXEaiUmTNYXW6KGBFiYJczzNkcODuRuYRPQRpCJHN7ShtRG3j0OIKGCiaRls+02hNhAihmEfFzJ6A4GBtI4lmFuiAzK8T/YNe61y3fyL+Ud7hRAdAOHfzn+4L0IYBJ38DUqpWwete69SylNK+cCvCNLMvKztf6J/GRMyg8rcAJU/gnEAMnIaljEFt/hrhDEXI/Y24tZcaoVfoJkzsGLvR7ePolT4CboxmWjsw9iRN5Mr/AhDH0sifg7x6LvoyX8PXR9JU+I8UvGz6cx9H11rpy35Cdr8AjtyP8CQGYamLmC4X2Vr9gdoMs6o9AV4vsOm7I+RwmBc5gJ832d9NkAbEzOfQAjJmp5f4uMwNXMumjSIGS04fplZTR9HkxYRPUXVyzG36aOYWgxbi1Fyejig5SxsLYkpTfL1vRzc+n6iWgZDSnpqOzi09d0k9BY0IeisbeHQ5neQsdoRQrGrsonDW8+gxRoKeGwtrefI1tNos4eh8NhUXMsRLScyLDoKhce6wmqOaDmekbExCGBVbgWHtxzN2Ph4zh93Dsuzyzis5XAmJibySXkeS/qWcEjzwUxJTuGSieezsHcRBzXNZ0Z6OpdO+QRPdC1kftNs5mZmcbl5EY92PsnczEzmN83hSquJB/Y+xszUFA5pmcvQSAv37XmUqclJHN56AKNjw7hn9wNMTEzgyLZDmJAYy92772VMbAzHth/JjPQU7tp9DyOiwzmu7RjmZWZz1+6/M8Tu4IT2Ezis9SDu2nU7rXYbx7edzDFtx3DX7ltIm02c0H4aFe8U7tvzF+J6kuPbz6TuVXlg741EtBjHtL8D13d4tPMGdGFydPt78H2PJ7uDENfDWj6AELCo+/f4eBzUfBaa1In3tOH6FeaE4y5RPUPdyzO9KYibN2WSmtfNxMz5GDKJJiLU3N2MTl+AoTUjhUnN3UxH8iIMrR0hNGrOOpqSF2Hqw4OqXM5zxBOfQNdHAz5efQVW/BykMQ7wUM4SRPRDCJn+T92ir60p4PWpGXsH8CHgqvDv/zf5VAQJxH4DrFVKff8lbR396Ac4kyC55Mva/o7+ZUypCuQ+AX4vVO7E14ZTz30e5e+Fyh0IbRjl/JX43nao3oaQwykVv4PnbqRe8dG04eSK1+A4a6jgI+VQsuXrqdafBXwMrY1s+U5KtacBH1PL0Fd5mnw1qP+pyzj5+vP0lO8BFLq0KTt76CwFEa260Kj5NXYVbgJAw0WJKNsLfwRAqDKGPpRNuYDJK5UjYU5mfchzPb+bFvtAVvVeh0BS83YyKn4cK3t+g0BScbcyMXk6i7p/jUCSdzYyt+k9PNV1LUJIemvrOKzlLB7r/AVSSLprqziu/eM8uPvnCCHZW1nBm4deyF07f4YUkh3lZbxjxMXcseunCCTbykt438hL+OuOgB9vLi3mw6M/x43bfoIANhaf4dyxX+D6rT8OatjmF/CJCZfyu60/wlc+awtP80nzUn6z+Ye4vsea/FM0GZdy7aYfUfdrPJd7mmbz8/xy04+peBVW5Z6kzc7w6xd+TsktsTL3JO1Wmt9v/Q15J8eK3JO02xlu2v57+uo9rMg9zhA7w+27bqKztoflWZ92K8ODnbexu7KdlVmfVjPJwt772VHZhJ/zaTISrMw9webSGpTyaTJibCw+y8biMpRSJHWbvdXnWZcP6vpGNZ2iu5Pnc4HPI5rA83OsC5m8KTxMqdiY+0vgY1UhYaTYmLsegUCpPC3WKLbkfgsIfL+b9sgstuV+jkDiersYGj2a3fkgS7jjbWZo/G105r6LQOI46xiSOIee/DcBSd1ZTVvyMxTyX0Gg4TrLSCWvpJb7CgiJ7ywmmroKP38FCImqP4NouSv8ZbsP2OszGHsVcLMQ4iPANuAdAIPnHwGHAR8AnhNCLA8/1x9G+R0hxOxwb7cAH/9XG9zf0b+cOWuDTr7B6G8IOvkGo78B39s2iNH/HtdZR4PRl66jXl9BP6Mvla+jUlvCAKP/HcX6chqMvvAH8s66hu4uXk/e2TWQ66bwJ8persFX9xRvpuz7DSa/s3gbLpFBzP7vKNkywOgL92LqawYx+4fpru5s1KDdXlpA0S0MMPryMqq+aujO6nqW9d7eYPY9tS0s7ft7Q2fre1jSe08j7r7g9vBMz70NjQuLeu5v5HEBWNj7AI5fRxFMSXy65yE85eAqFwvFk90P4voOjnIwpcWTXQ/hKpe6X8MQJo93PYzju9T8KrrQeaL7Yep+jaofMPrHux6h4lWphkz+8a5HKLnFhn6s+xHyTm5Adz5ET727sY+Pdj3InuquRpz7Y10PsKO8BVcFPnmq5wG2lZ9vMPcF3fexs7quwegX9NxHV21Tw6eLe++j6GxtLL+s714cv7Nxjldm70aqYoPBr8ndQ1S6Db2xcA8J3W74cEvxPoq1zCBGfz91Zy1+P6MvP4zwdzR0rvo0lio24ubLtWVk5XWDGP1aSqXfQtjuupupl/8AVECB7+3GL9/Q0EFJ5ef3x9H/D0wp1QMc9w/eb8w/Uko9yT/OE4ZS6gP/023uZ/QvZ/ro8B8JRJDWkeH/MmT0RyIwAS1k9EeGMwQDbVpHoMkmQEcQwTKPQNeGBFpEiFiHYepjCFhohLh9CBFjMgIDgU3cOoiYOQ2BiRQ2CXs+CXNGwPixSFpzSVszkZhITFLWTDL9DB+TtDWVFntOqA3S1iTaInPQhIVEJ22OpSM6t6GTxnCGRQP+K9CI6a2MjM5FFxYSDVtLMjo+F0PYCCSmjDImNqA1aTAuPhdDWAgEAo0JidkNDTA+MQtDWIBAoZgYn4ku9FD7TE7MRISXpUIxJTmL/utdKcWU5MzG7EUBTEvObHxJCCRTkzPwgzmn6FJnanJG2C4wpcnU5PSwNdDTk9MRQjT0tNR0dKGHx2cxNTEDS7OQoZ6SnE5UizX0xPh0kkYaiYYhLMbGp9NktofaZFx8Om3WCDShYwiTUbGptNtj0YQeMvhptNsT0DBCBj+VIfZkNBHoIfYU2uxpaMJEYtBiTaHVnhX6zKDJnERzZF7DxylzIk32AUhhIzCIGWNI24eETF7H0jqI24eHcfI6utZM1Doi1BpSxrGtY0JGryGEjW4eGTJ6GbxnHUnA6GXgBX3Uv+f++w+Y8NUrer3RbP8T/cuYkE2opj9B6Q9gzkdGz8Q0puKWfoNmzEGLvou4eUCY62YGZuyD6PYxlAs/RTcmEYl9BCtyGvn8j9CNcSTiHycWew+9+e9j6CPJJM4nHf8YXfnvYWhttCQvpNkvsid3NZpsoiN1Ia5fYUfu+2gizvD0Rfh+na3ZHyGEyej0RSh8Nvb9GIDxmYsAyfq+n+GrOhMzF6BJk1jvEFxVYmrmPHQZIao1UfNyzGj6OIYWw9ISVNweZjefja2lMWWEgrObOc1nEdOb0aVBtr6D+c3vI2G0owmN7uoWDmh5N2mjAykEeysbObDlHTSZwwCfneXnOaj5TNoiowDF1tIaDmp5M0MjYxEoNhVXcmDzSYyITkAIwbr8Mg5sOo7R8clIIVmdW8IBTUczPjEVQ+qsyD7D3MzhTE7OwNJsnu19mjmZg5mWmk1Mj7Gw5wlmpeczKz2PpJHi6e7HmJGezdzMgbRYzTze9RBTktM5sPkQOuwhPNr5IBMSkzm45XCGR0fycOe9jI1P4PCWoxkfn8CDe+9iZGwsR7Qcx7T0dB7YcwdDIyM5qvVEZqfn89De22izh3FU65s5qPlIHtz7V5rNdo5sO50jWk/i4b03kTSaOKrtrVTcM3m060aiWpIj295J3avwRNcfsbUYh7W8B9evs6DnD2jC4JCWD6LwWNx9HSA4sCUIplje82t8PGY3fQRNGqzqHYLnV5ne9PFwbkQLjp9nUvoT6FoUU8tQ97oZk74QU0uhiTh1bzfDUhdhai1IaVNzNtOeuhhD60AIg7qznkzioiD/vJC49VXEEuej6WMRAtz6cqz4OWjGRHwUqr4EEfsgQmb+U7foa2v7cPbK/R39y5hSNcheDH4n1O7B18fi5C5FeTvwq3eCPp5q/kp89wW86t+R+niKhe/guWupVXw0bRyF4s9xnGVUKx6mPpZc6XqqtQVU8TD1keTKd1KqPkzA6IeRrz1NvnI3Ch9La6VUX0uufAsKhaWlKbt76CrdCIAho7iqRmcxyBdvSgNFjF2FgMnrAgy9gx2F68Ln6yoxYwov5K4jqFFboCVyEBuzAZP3/W6GxY9nTd+vAn7r7WF86kye6702YPjudqZl3sOy7l+EDP8F5jWfzaKunyGEJO+s4/C2C3iq82cIIcjW13LckIt5bO81CCHoqa3kzUMv4aG9wRdTZ3UZZwy/nHt2/QiAXeWlvHvU5dy16weAYmdlEe8f9RVu3/kDfOWzrfQMZ435Crdt/x6e8thSepom82vcvP37OH6NF4pP02p9hZu3/4CqV2ZT8Una7a/y523fp+wV2Fh8go5IO3/e9iMKbpb1xccZFhnCLTt+RtbpYmPxMYZHhvD3ndfRXd/FusJjDLOH8MDeG9hb3cr6vGKY3c5T3bewq7qB9QWfIVYbS/vuZls5YPJtdivP5x/hhWIwN6LVamZraTEbC0+jUDSbabqra3ghH9TxTekxis5ONuXuQqGIaxF8leeF/F8BiGgGpoAt+T8HPhaKuJ5iRz4YZ9GpkrbGsDMf5AeSqkizPYfd+Z8DEvxe2mLH0FX4EQKJ8nfTGns7PfmrAYnvbac18VHy+asASY+7kabkZykXvhG2ryOevJxqPoiz951VRNPfxC98FRAoZxmi5Q6EsF6HO/Lfa8GEqX2zp9/f0b+cOWuCTr6f0Zf+gPK2N5i8W7oO393YyANSK/0W11nFAKP/FfX6Ihr56IvXUqktop/R5wvXhow+QA+9hV9RdJ9ngNH/hrKzAxV+vqtwHcUXMfo/UvcH8pbsKtyIS6TBY3cWbkZoLYP0bUht2QCTL95Nb+2Fht5Repi8293Qu8oLqfr1ht5bXYHfpzd4cld1PSv6bm0w+r7aNpb13hbwZAU5Zw9Le+8IYsAVFN0elvbdSd2vhCdYsKT3Thy/1sAvi3rvxlV1POWigGd67sTx67iqjhI2C3uC9oDRWyzsvoe6X6XuV9GFwYLue6l6ZWp+BYnk6e57KXsFan4FECzovo+Cmw01PN1zD31OVyO3zFPdd9NV29moyfpU913srmwO5g4AT3ffyfbK83gho1/Yewc7SqsbzH1h9+101tYMHE/P3+itr2/4dGnvbVScLfjhNbCi7zYcr6vB4Fdnb0Wj2GDu67K3YkuvoTflbiNlWA2fbi/eRqHa2tC7in+jWl8+iNHfDf5mlKqigFzlYaTfN1AzobaAnFADjL6+nErp2sY17brPUw+ZPYDvbcEv/6FxD+DvCcay9hFGzz6avXI/o3850wZXuIogzUNonDIRQZoHE8TVCyCCbh4Uss6A4evmwWFcvQZEMI2Dw7h6LWT2B2Bow+lnoVF7PpY+noDpW8TMudjGxJDZW0TN2cTMKaE2iZsziJtTQ20QN6eSNKeHDN8gbk4ibc1AYiLQiZsTaLJmIoWFQCdhjKbFnokmrJDJd9DW0JKI3syQyKyGNmWcjsgs9JCxB7lW+jVoQmd4ZGZDCwSjYgPtChgZmzGglc+o2Ex0YTT0mNjMMMY+0GPjsxp8X+EzLjYD1XjqUoxNTG9ogWRcYjp+WNRDEzrj4lMbna4hTMbGpjYGSg1hMTY2rbF+Q1iMi81ACu1F7YY0AYEhLEbHpmLLKCLUo6JTiekpBDJk7lNJGi3IUA+PTiVjDkOgoQuToZEpNFmjkOhowqQ9Mpkma2ygMWi1J9NkTUAKA4lBsz2RJmsykkBnrImkrWkNnyaMCaTsWQ2fxoxxYR1iC9Cw9ZHErXkIbEDD0NqJWgcNYvJpItbAdStkDMM8lIDBCwQmunFIyOgJrlXjoLA9NH1wuYk3tgmlXtHrjWb7n+hfxoTWjMr8Icx1cwAy+k5McwZu8Vdo5hy06PvRrIOpFX+OZszAjH0Y3T6ecvEnIaM/BytyBsXCD9CNccTj5xGNv5dc/nto2gjSyQtJJs6lJ3c1mtZOS+qTNHk5OnPfRdOaaEtdjOeV2Z2/GiliDE1/Gl/V2db3PaQwGZH+NAqPLX0/BGB05mIEGpv6foyv6oxruhiJyQbtp7iqxMTMRWgyQqS3lbrXx5SmT2BqSSwtTdXtZmrTOdh6BkPGKbm7mNn0MSJ6C4a0yNW3Mavpw8SNIWjSoK/2ArObPkDKHI4mJJ3V9cxtfg8ZcxRCCPZU1zC36Z202mMBxY7yc8xtOoMhkYkIYEtpOXMzpzIsOgWJYGNhMXMyJzEqPh1NaKzLL2RW5jjGxmejC4M1+aeYmT6aCYm5WFqEldnHmZY6jCmpA4lqCZb1PcLU5EFMTx9CQs+wuPdBpiTmMStzOM1mOwt67mViYjZzM0fRbg/n6Z67GBubzgHNxzE8OpYnu+5gdGwKBzSdwJj4FB7vuo3hkfEc3Hwyk5NzeLzrFobYozm45VRmpg/j8a6baLWGc3DLmczNHM/jXTeSNoZwWOvbOdg5jSe7/0hCb+GQ1ndTdd/F092/J6qlObj1fdS9Eou6r8OUMQ5oOQtP1VjS/Ws0YTGv5WzAY3l3kGZ4dss5CASren6OwmN683lIdNbpP8Xzq0xquhBd2liyDVflGZu+CENLYGrN1L0uRqYvxtQySJHG8XbQkfoMhtaKFFEcdzMtyU9h6MMQwqLurCOVuBhDH40QOq7zHNH4BWj6eISQuM5yzNg5SGMyvgBVX4qMnoWQzf+5m/S1tP2M/v+mKVWH/BfB2w61B/H1qXi5y8DbhFe7H6FPo5L/Gr67Frd6N1KfTrn4PVxnGU71TnR9OqXiL6nVF1Cr+pjGNAqlP1GtPQzKxzanUKjcRaV6FyiFbYyjVFtAqXILKEVEH03JWUu+fDOgiOjDqHp7yZUDRh/RW3H8Gr2lIJ+8raVAROkqBoze0qIYWgd7ir8DBKbQiJlT2FX4DSDYJD3S1kFsDfmuJkq0RY9nc+5aQLJK5RiVPJMN2YD3LledjE++n+f7glw0S/2dTM+cw3O9PwUEC70tzG+5kBU9PwHgaWcjh7ZfwpKugME/UV/LMR2XsbDrh6AUj9We401Dr+SJzu+jlE9ffQWn61/nsT3fx8Olp/osqZFX8fDe7+GpOp3VxTQZ3+H+3d/DVVX2VJ6h1f4uD+6+mppfYk/laYbYw7hv99VUvDy7yk/SERnOvbuvpuj2sqv8BMPskdy753vknU52lB9nRHQU9+7+Eb21nWwrPcawyCge2fsLumpb2FF8hBGRUTzV/Tv2VNazraQYFhnJ0t6b2VVexbaiYmhkFKuyf2dbaSnbCNo3FR5me/EJFIoh9jB2lZ9hZ/EhFIo2awi9tTVsL94JKJrMNqrudnYXbwEgY2bw/Ty7ijehgKSRQBeCPaUbAEFMs7G1DLsLfwx8KnVS5mg6i4FPDRRpew5dxSCOfqeo0RQ5lt7iTwCBUEWaY28jV/wBIOlSPTTFz6ZQuBoQZP09pBOfolS4ChB43nYSictwilcB4HgvIJNfRxWuAhS++zyi+VaEMP+t9+LrY2/MiJpXYkL9F/8MmT9/vlqyZMm/XvDfZKq+DNV3doPRK+tU3Nr9A3zSOpla7cEGv5TWCdRqjwIB39XNI6nUnqaf0RvmIZTrA4zeMOZRri+jHwwa+jTKzvMNberjKbkDjN7QRlD1+vDD7RuyjZry8PwsAJpM4xGh7gUzqqWIIrRWqu4OAAQmhj6KkvNCeIQS25hKvv58QyfMWfSGxckFGhl7Ll3VpWGrQZN9ELsrC4PtCZNW+xC2l58Mtc3Q6KFsKT4aHL+IMCx2JBsLDwb7KyKMShzNuvx9oY4yJnEMa3IPoPAwRIQJyWNYmwti6Q0RYWLqGNbkHsJVdQxhMzl5LGtyj+KoKrqwmJY6hjX5x3D8CpowmJo6jjX5x6n7FSQaM9LHsTb/RDguIJiROp51hScb4wTTU8ewrrAAJ2T0UxJHsLm4qJFbZnziELaVFjcY/ejYAewqL2sw+hHRWeyurGww+g57Kj211Q1c1GJOJO+spf9RMWOOoTyI0SeMYfjengaDj2itCIo4fiG4BmQaW/rU/Z7wnMaIyBhVb3foY4uU3krF3Rz6UCNjjaHi9PtUkLGmUakvb7SnrXlU6wtDbZCyDqFWfyzUFgn7KJzag6GOELePw6/dG64uimWfCNU7Qx1Dy/we8R9m9EKIpS+Xe+aVWDIxTB045/xXtOxDT1z+qrf3etqrYvRCiHcIIVYLIXwhxMsl+NkihHhOCLH8JRnf/rtNG07jt5yIIMz5DMxhiCDNeTR+FIkIujkvnCHYz+znh2XWBGBjGPPCfPUSgY1pzEHTOgiYvY1tzsHQR4fawjJnYhnjCJi9ScScjm1MHKSnEjUmNRh91JhErBGHrxMzxpMwp4bMXiNqjCFpTg35rkZUHxnw3pDnRrQ2Mtb0UEtMLUOzPQOtn8nLGC329IaWwqI1MgMtnBUphUa7PRO9MUtSMCQ6o6EVio7I9EHapyMyDS3MRa/wGRaZMSiO3md4dEbjnCsUw6PTG4wdYFh0OkoNxNEPj05r6GDMYGpDGyEz73+4MYTFsMjUFzH6YdGpCBFsXxcWwyNT0cKnVV1YDItMwZABv9aFRYc9BVtLNnS7PYWo3hzMKwgZfMIY2tAt1iSS5kgEWpibZhJJcwwCHSkM0tZEkub4QIdx8UlzUsOncXM8CavfpzoxYwzxMD8SaET00cTMWQ1tasOImnPC61KiyxZsc27I7CWaTGJZ8xD9TF5EMMz5DSYvhI5mHsAAkxcIY/4grcL7ZB8wxf6asf/EVgFvBX75CpY9RinV/Sq397qa0FpRmd9B6XdgHoCIvgfdmIFX+hXSmIMWO4uoeQj14s8CRh//KLp9PJXCT9D0SUQS52FGzqBU+AGaPpZ44kIisfeTL3wXTRtJKnkxCffj9BWuRpNtNKU+Q8bP0pX9NpqWoSX5WXxVYk/u22giTnvqEnxVY1fuOwhMhqYvQeGzo++7AAzPXAJItvZ9H4XDqPSnkcLihb4f4akSYzOfQhMxLK0Vx88yIXMxupbClGlqXhcTM5/A1lswtBgVZxeTMucRNdrRhEXR2caUzDnEjGFIYZCrb2Ja5sMkzdFINHprzzMt80Ey1jgAuqqrmN70XpqtSeAr9lRXMD3zDtrsoHbCzvJSpqXPZGg0KN69pbiI6elTGRGbgxQaLxSeYmrqJEYnDkAXJuvzjzEldTzjEgdjyijP5x9mUvIoJiYPJ6olWJV7gImJw5mcOoqE3szy7D2Mjx/E9PRxpM0Onu37O2Oic5mVOZEWawRLe29nRHQGczKn0BEZz6KeWxkWmcq8ptMZGZ3O4p6/0G5PYH7zmYyNz2dRz420WGOY3/wOJiWPYlH39WTMERzQ8m6mpU9iUc/vSRpDOaDlfcx13srint8S01uZ3/xBKt77ebbn10S0NHOaz8bxSyzr+QWmjDO7+Rw8VeW5np+hCYvpzeeilMea3msAwbSmC0AI1vf+GIXLxMwnkUJnU9+P8P0q45ouRhMRzGw7np9jVPrT6FoCQzbh+F0MTX4GQ29GigSut4vW5Gcw9Y6Q0b9AU/IzGPpIBCaOu55E4pMYYUCA56wiEr8A3ZgMgO+swIh9HGlMa8TRy9iHEVrL635v/tvsv5hwvBp7taUE1wIE+Xf2PQsY/VfB2wT1x1HGPLz8V1DuWrzaIwhzPk7hm6j6Mtz6g2jmfKrFH+LVF+LV7sMw51Mu/xqn9ihOFSxrPqXSzdQqQR4T25pLsXw3lcrtAaM3Z1GpL6RauQ1QRIxpVJ3nKZduCfVEat5e8qWbAYgaY/BUhXwYV99rDEWJKH0hs49orejaELpLf0AAu7UkEWMy3cXfAbBD2iTsA9kb8t2tElqix7M7HwwEbhZ1OhJnsi0fpNleT5HRyQ+wNRckUXte9TA+fS4bs9cAilX+HqY3f4r12Z+g8FnZvZ05rZfyfN+PUPis8DZxYNuVrO79AUp5LHPXEWv/Fsu7f4CvHJY4q0ka32F5z9V4fo2lzgoy5g9Z2vVdHL/CkvqztFo/Zkn3d6l5RZbUFtNujWZh5/eoejn6qosYEhnLws6rKbk9ZCsLGBaZwMLOqyk4e+irPMWI2GQWdn6fXH07vZUnGBWdwsLOH9Jbe4Ge8uOMjk5hcfdP6K4+T3flYUbFpvBsz2/orKykswwjolNY3fdn9pYXsbcMI2KT2ZT7G93lx+kGRkQnsr34EF3l++kChkUm0FlZSHf57ygU7fZYcvW1dJaCGgKt1igq7g72lgKfZ8zhKJWnJ/TxLrMDTQh6Qx/v1luwtAy9pSCf0e58krgxllzxNyAEnVqEuDmPbPFaEIJuoZOKHEux+AsQ0CcUqeiZFIvXAJClRjp+NuViMLeh5BeIJz5JtRjMZVB+D/HkpTjF7wXa242V/Cqq+D3Aw/e2I5pvQoSRU2942zf7+deG0QshHgU+q5T6h1hGCLEZ6CM4jb98uQT9QohzgHMARo4cOW/r1q2vev/+t6bqy1F9ZzWYvLJOw63d19DCOiVkmSGjN1/M6DXzaKr1J+ln9LpxKJX6Mwww+vmU6ksZYPTTqblrBukJVJztqHB9hjaSit+HH44Z6LIdTzl4flBzQJMZXBHB8fYG+yNiIFuouduD/Q0ZfcXpz48usYxpFJ01DR0355CrLQuX14jbB9JbXRRqg4x9MF2Vp8L1WzRFDmd36dFg+8KmLXoUO0oPhDrC0OgxbC0GfFcXUYbFj+eFwl0EhVWijIi/iQ35u1F46CLKmMQJbMrfjY+DLiKMjp/IxsJ9eKqGLiKMS76JDfn7cVUVXdiMS57IhtyDOKqCJkwmJk9kY/4hHFVGojMxdRKb8g/jqDIgmZQ8iRcKj+CogNlPSJzA5uITjTq74+LHsKP8VCOufVTsSHaUF+KFjH5E9GB2V5bgh4y+IzKPnuoSVMjoW62Z9NWfazD6jDk5PL+BTprjKNc3o8JrIKaPwPP3NvIT2Vo7OgVcPxf4XDZhCoXjd4fnNE5Ei1HzdjZ8kNCHUHP7faqRMMdTddY2fJoyZ1Jznm20x80DqNUXhNogaR9GvTbA6KMvYvQ2Uft4/No9gRRRLPskqP69obXMHxHmLP6T9pow+vgwdfD0f5kfDIAHnrli32L0QogHhRCr/sHrLf+D7RymlJoLnExQ+/DIf7agUupapdR8pdT81tbW/8Em/g2mdTDwFR8BY+ZAm4ggzJkgZKNdmjOgEX0QQTNmhDlDAkavG9ORMjVIT0WTbQRusDDNaehhXD2YmMZUDH0kAbM3MI3JYW4cHTCwjAlY+tgBrY8loo9HYAA6tj6GaBiHDxq2MZKYMYkgP4/E0ocSNych6WfyLSSMySGjF+gyRcqcMkhHSJtTkf1MHoO0ObXB6AWSJmtKQwNkrIF2hR+2Wy/RRkO32FMacewKRVtkIM4dFC324LKZ0GYPxMkLJK325EanK4X+Iq0Lk1Z7UoPx68Ki1Z7c8HFQc3VyY4wg0JOQ4RiCLiyarYnhGINAC7UpEw3dZE3C0jLB3giTjD2RqB74WGKSMscTM4YRZMg3SJrjiBkBsxcYJMxxxIzRCPQGg4+a4xo6YowmYkxo+NTSRxFp+FTD0odjG1NDRi8xtHashhZoMoNpTA8ZvUDKOIYxE8JjEsJCN2cS1IQFhI40ZjI4bl7oM3gxo+9gn7D+JG2v5PUGs3+JbpRSx7/ajYRZ2VBKdQohbiNIlP/4q13vv9uE1o5K/wbK14ExHxn7ILoxE7/0SzDmoMc+ijQPwSn+FGlMw4ifj2adQLX4YzR9InbiIozIGZSL30fTxxBLfAo79n4K+avR9OEkk58lnjifbO4qNK2ddOpz+F4vvblvIWWGptQX8FWBruw3kSJOS/pSlKqxJ/tNhLAYkv48Svnszn4LgI70pSA0dvR9B0WN4ekvIITFtr6r8VSRUenPock4W/pacf0sozOfQZdNmFrA6MemL8bS29G1GBV3J+PSFxIxhqMJk5KzjfHp84mZoxBCo1DfyITMx8OBQ0Gu/jwT02eTtiajUPRWn2NS+iya7OmAT1d1OZNS76UlMhuFT2dlCRNS76A9Mh8B7CwvYELqDIbHDkGisb30OOOTpzIifgRSGGwpPsy4xEmMThyNISK8UHyAMfHjGJc8HksmWJe/h9HxI5mUOomY3sLa3B2MjB7ClPRpJI0OVmdvZVj0AKam30LGGs2qvr8yJDKL6Zm30mpPYmXfjbTb05nZ9E6GRmezsu+PNFuTmNn0PobHDmFF7x9ossYyq+kDjE0cx4re60iZI5nd/GEmpU5lZe+1xIxhzGr6KFO9d7Oi5+dEtTZmNJ9D3Tub53qvwZJNTG8+H8cvsLrnxxgyztTmC/H9Kmt7f4AUFlOaPonCY0Pv9xAIxjd9GoFkc993UfiMyXwGKQy29V2NryqMTF+CJmPsyn4Hz88xNP15dJkOft153QxJfx5da0XKgNE3pz6HoQ1DygiOu5l04rMYxhgQOq6zgXjiU+jGRFAarruaSPxCdGMagoDR6/FzkcbsgNE7S5HRsxHay1bCe8OY4I05GeqV2L89jl4IEQNkWOA2BrwJ+Oq/e7uvhSnlQvHqIBVC/RmUdThe8WpUfRnUF+BbR1IvXI1fX4hXfxxpHUW9+FP86iP44lEM+2iqpetwqw/iCoFlHUW1fAte7T68msCxjqBSvR+neg8Ogrp1KNX6Imph6FrVOpiqs45K5Q4EULbm4/h7qFZuBQRFcwaeqlIsBzHYeXMKCJti+c+AImuMQ5NDKJZuABS9+ghMYyJ9pesB6NRbiVsH0Fv8HSjYqyVJR46lp/gblFLs1ixaY2fSVfg14LMzrxia+CCdhWsBjx25OsOT57Er/wsULpuzecZnPsvO3M/wcXkh24vZfDlb89fgK4cN2d1E9K+zOXsNvqqy3ttGvP27bMr+GE+VWd/7Ahnjh2zM/gDXL7K+bz1N1jjW936fup9jnbOaVmsia/t+QM3r5XlnJUMiU1nb9wMq7l7WO0sZFpnBmt4fUnR2sq6+lOHxuazp/RGF+hY21BYzKjaPNT0/Jl9fT7G2gNGx+Tzf92OKtVWU608yKj6ftX3XkKs+S776BKNiB7Kh71oK1acpVTVGxQ5gY/Z6ctVHyVcFI2Pz2F64nWz1QXJVwYjYPPaWHqRQvYcCMCw2h77qQvLlu0AIeiKzKDmrKVRuRyDoiUyj5u4iX/4bAN32VJTKkS8HuW567EloyHAuBfSaYzBlhmLpT4CizxiBrY+hGDL7Pn0IMWsu5dLvAcgVm4nbR1Mu/RalFHkRJxE7k2rp1yjlUxI28fgHqJauBeVRFhCNnU+99HNQHjVVRyY+h1P6KSgXpYrI5JWo0jWgHHy/F2FejxD7yJScfbSjf1WMXghxJvAToBXIAsuVUicOTqAvhBgL3BZ+RAf+pJT6xitZ/38+jn4Fqu9DIZMXIaO/J4ybFyGjv5/+3DbSPBGn9ggvZvRPQJhPXjcOo+4spJ/R68b8sIZs8FtQ12dQc1cN0hOpOlsbjF7XRlH3e1GqGKxfDsFRDp7fG+omfGHhenuC/RFxpGyh7gbjHAILoY+h6m4Ij1DDNqZSrvcXqJFErbkUakvD5XVi1kHkqgtCbZCKHE5v5bFwaYtE5Gi6yg+G27NpiR7bKF6uiQgt0RPYVbor1FHaoyexvXgHQbH0KEPjp7CtcAcKN2T4p7C9cAc+dTQRZVj8zWwr3Imnqmgiwoj4qWwp3o2nKmjCZlTizWwr3IOrykhhMjp+GlsK9+GqMgKdMcnT2NbQGqMTp7K9+ABu6NNRiVPYVXqwwchHxE5kV/mxRlz7sNixdJafwA9z37RHj6CrvBA/9GmrfRB9tSUN5t5kzaEwyKdJczql+oBP48ZE6u5G+msMRPRReF4nXjjuY2lDkBRxw7kRhmzGEOD4XYHHRAJbxnG8cG6EsInqQ6m7Gxs+jRmTqLurGz6NGbOpO0sb7XHrYOr1p0NtELWPCK9bAJOIdQxu7YFQ21j2Cfi1IIAAEcGyTwkZvQoYfdP1iMFY8z9grwWjT8WGqoMnf+wVLXv/s1/dtxj9y5lS6jal1HCllKWUaldKnRi+vyuskoJS6gWl1KzwNe2VdvL/Faa1g+oHchboUwY12ghj8iBGbyONydB4sgn0QOUdG82YRFDrVwAWmj4pjKsXgIlhTAzj6mWg9fHo+rBQGxjG+CCFLBqgY+pjGgwfNEx9FKY+muD7VMPUR2CF+e5BYujDsI2xDUZvau1EjPGhFhiyiUhYwzbguXFixsSQ4QcdedSY0GD0QugkzIkDGkncmBgy/cAS5uQXMfmkNbERlw4+SXNig4GrUIuQ0YNP2pw06Jwr0tYkBodGpM1JL2L0aWtAS6GTNicM0gZpa0BrwiJjTWysTxM2KXMC/XH7/bo/944mLFLGBGS4/1JYJM3x6DIabt0kYYzDDMdhJCYJcxyW1kKQN8YgZozF0gMfB3MfxmDpAbPvZ/DWIB9b+igsY8Cnlj5ykE81TG04lj4uZPYSQxuKaUxo+FiTrRjGBAh9KmUSXZ8UahAiEup+n5poxtSQ2QNCQzMm8SJGrw0sj/JB7hvo5v80o/+/bEIbgsr8AkrXBfnoYx9GN2fglX6JMGajx89FmAfjlH6KNKZjxi9Ct4+jWvgRmjEJK/EpjOgZlPNXo2ljiKYuwY69n1L+22jacGLJLxCNf5x8/iqkbCWZuoyE300293WkzJBOfQnfz9GT/TpSxmlKX45SVbqyX0UIk9bUl1D47M0GJKw9/WVAY3f2ayjl0JG5HCFsdvd9E98v0pG5DE0m2d53Fa7fx/DMFzBkM5pI4nqdDM9cgql1oMkINXcnI9OfwdZHItCpulsYmbmYqDEOgUbZ2cCo9CeImVNQSlGor2FM6lxS9gzAI1dbyejUR8nYcwGHvuqzjE5+iObIQSjl0V15htHJ99IWPQylPLoqTzEq+U46YkcjEOwpP8LI+JkMS5yAQGdn6QFGxk9lRPJkNBFhW/EehsffxJjkaZgywZbC3xkaO5pxqbdhay1syt/CkOhhjE+9nZgxlI25m2iPHMSE1DtJGqNZn/sTrZE5TEy9m4w5ifXZ39MUmcnk9Adpjczl+exvSZtTmJI5m47IoazL/oqkMZ4pzecyPPEm1vb+nLgxiqnNn2BM6gye7/0pUX0YU5ouoOK+j3V9P8TW2pnUdDF1r5v1vd/H1DJMbPoMjp9jU+930WWCcZlL8FWZF3q/g5QWYzOfQ+GypfebCCEZlbkUgWB79pugPIanL0UKk93Zb+D7ldCncfZmv4HvZ2lLX4Yum+iWKVyvm5bUpejaEKSI4Xm7Sac+H8TNCxPP20IieQm6Ph6QeO4GoonPhHHzCs9ZjRW/CN2chUKFcfTnIc35+MJD1Z9Fxj6K0Ib8527S19iE/wbsxV+B7e/oX8aU8qD0S6gvBWclyjoRv/RLVO0pVP1ZfPtkvNKvofYUfn0JvnUSTum3UH8Cz3kG3z6Zeul6/Npj+OIpvOgpVCu349YewRUaVuQkatWH8WoP4KHhRk6kWl9CvfoAIKjbJ1B311Ov3Q1IqvbReN7eRhx+xToCX1WoVYKY7LJ1EIgItcptKKBUnoOU7VTKf0HhUyhPwzQmUinfCCgKpfHY1jxKlRtAeWRLw0nYx1Io/RGUR2+xjXTsLeTLv0cpl55CGhF/H32l36KUQ2fBYkji42SLv8ZXNToLAlP7DH3Fa/H9Cl2FOhHtS/QUfoHnl9mbLxAzhtGV/xmuX2BPvoekOYbOws9xvRy7cnvIWJPZm/8prtfDbn87zZGZ7Cpcg+N2srPwAq3ROezIXUPd28XO3Ho6IgeyPXcNdXcbu9w1DIsdxvbcT3CcjexxVzIidgQ7ctfg1Newx13GyPhR7Mj/DKe+nL3OYkbGjmFH/hfUaovodBYxMnosO/K/olp9gq76AkrxY9hV+C3V2sPU609SShzL7sL1VGsPUa/rFOPH0Fm6nWr1fmpCpxA/it7yQ1Qq91MVGoXYURRqi6hU76EiJPnoEVSdtVSrdwGCQuRQHG8X1ertoT4I3y9SDX1asA9EQ1Ar3wpA0ZqNLjNUyreEPp2ObYylVr4JhaJUmoxtzaJe/jMKn3J5LBH7COqVG1HKo1IajoicSr1yPSiXaqmNSPQ9uOU/gnKoyzQyfg5O6XegajjCRspP45euA1XFQyJlK6r0W1BlfByEecCgX2FvZFP7Gf1/wv67GL1E2afhVu8eYPT2qXjVQYzeOhG39jD9jF5ax1KrPkY/o9fMw6nXF9DP6DXjABxnKYThf5o+k6qzqqF1fRI1d3NjfZo2GsfrQalCqDvwVA0/ZPRSNuMLC6+RByWBEE04Xj+jt9H00dTcdeERahjGdKrOyoa2jXmU64tDrRO1DqFQezL8vEHMPpJc9ZFQWyTtY+ir3BduzyYTOYGecpCwS4oI6ejJdJX+FuooTZHT2Fu6BfCRIkZr7HT2FG9B4aKJGG2x09hTvA1FDSmitMXewu7i3/CpookobbEz2F28HU9VkCLC0Phb2F28A0+VkcJiaPwMdhfvxFMlBAZDE29lT/HvIQPXGBp/K3tLd4Va0hE/nc7SfSGjF7RHT6Gr8lCYz13QHj2B3uojDUbfEjmWnsoTDcbeZB9OvrqgwehT1gEUaosZYPKzqLgrGjpqTMZ1NzQ+b+lj8L09jbkRhjYUoUqN/EW6bMEQ4Pr9+YuSGDKJ64VzI0SEiD4MpzHuohM1J+M4A+MutjE3vM4CH0etg3EGMfqIdQRu7dFQmxjWMXi1+0NtY9lvwq/dTcA2IhiRk6F6BwOM/gaEMYP/pL0mjD7SoQ4Zf/YrWva+Vd/8v8Po93nTWgcxehO08YMaLYQ+Dhqzgu1QawPt2lho8GoLqY0N4+qD9WnaWIQI8qSAgaaPQcqWQXoUmtYeah1dH4neYPgaujYCXQv4bqCHNfLbg0TTOkKGH9Rk1bV2DH0U/Tn0ddmKpY8K+a5AkyksfUzId4OkaJYxNmT2IIQVMv5+rWEb4waNQwhsfdyLqg1F9PGDmL1P1Bw7SHtEjbGNWZUKj6gxvpFrBnxi5oTGOVYo4sb4F01ejBnjG8w9GHgc14ibF0InZowdxOhNYsaYl+hxjbh6KSzi5tjGuqUwiZpj6b9NpLCI6GOQ4f5KTCL6aGR/XhhMbH00ukyG2sA2RmHIZvoZva2PwtD6507oWPpIDG1Iw6emPhxDG9rwqaEPx9AHfGpoQzH1EaFPJbo2BH2QTzWtDV0b3dBSNqHpYyD0qRBxpD4WBvlUagMaYaDp4xmIo5fBdd1oB6EN0soHuQ+lQNjP6P/vmdCGotI/gfJvwZiHjH8Uw5yOW/wFwpiFHj8faR6EW7wGoU/FSHwSzT6WeuGHSH0CZvIS9MjpVPPfRepjiCS/iBV/H+X8t5DaMGLJLxHxzqGY/wZSayOevIKYt5dcPmD0qdQV+H6OvtyVSBEjnfoKSlXoyV6JFAZN6a+icOnuuwKAlsxXAJ2u7BUo5dCavgIhInRmr8T3S7RlrkCTKfb0fQXPz9Kevgxda0Nm47heJ0PSX8TQhiOkiePupCP9hbDjl1TdzQxNfZaIOQkUVNwNDEt9kqg5A5RL2VnD0NQFJKx5KOoU6ysYmjyPpH0wvqpRqC2mI/kxMpEj8ZVDrrqAjsSHaI4eh69c+qpP0BF/D62xkwCfnsrDtMfezpDE6YCkq3Qv7bG3MDT5NqSw2VP6O23RkxiReje6TLC7eCst0eMYkXw/hmxhV/EmmiNHMjL5AWx9KDvy15OxD2FU6ixixhi25X9P2prP6NTZJK2pbMn+mpQ1k9Hpc0jb89mc/QUJcypj0+fTGjmCzdlriJkTGZe5mPb4SbyQ/RFRfQzjMp9laOJtbMl+H0sfzrjM56i6H2Jz33ewtHbGNH2ButfJ1r6r0GWGMU2X43q9bO/7BpqMMzLzZTxVZEff15DCYngm8N2uvq8AkmGZLyOEZE/flSgchqSvRAibzuwVKL9Ma+ZKNJmgJ3sFvp+nOfVlNK2FbC6B53WTTl2Opg0lL2w8bzfJ1KXoWpBEzfO2Ekt8LoibB3x3E3byM2jGNBQuvvM8VuIiNHMO4KCclY1r3qcexNHHPobYVyZMwf44+v+LppQHleuhvhjcjajIW1HlPyGdxeCuQ0Xehlf+M359ITir0KPvwC3fjF9/Gt9Zjh59O27l1lA/ix99O07lLvzak/jCxIu+nXr1Mbza43jCwIu8Fae+DL/2KD4abuQMHHcjXvVhPCRO5HR8vxNVewAPQb12CkrV8MOf2fXqm1DCxK0G4Yy12lEI0Uq98nfAp1o5FMMYj1v9W8Brq/OwjLk4lVtQyqFcnkHEPopa5S8o5VAsT0JET6VeuQlUhVJlNJp4N7XyDaDKFEttGDJJpXI9vl+kUEpjaa2Uy39E+TnypQi2PpJS+ff4fpZ8SSduTKRYug7l9ZAruqSs6RRLv0F4e8mViqTteWRLv8F3d5IlS3P0EPLFX4O7hVypk5bokfSVfoVyNpIt7WRI/Dj6ir9COWvJlbbixE+mr/RrlLOCnL8RJ/5m+oq/QTmLyfvrqCdOp690Hcp5ioK3ilridHqLv0c5j1PwVlCLn0Ff6XqU8zhFbxlV5wx6S3/GrT9OwVlCNX4G2dLNqNojlOsLqCVOp1C+Hb/2ELW6RTV+OvnKI/i1h6gKk2r9NMq1xbi1B/GERqV+KnVnHU7tAVw0KrE343m7cKv3IRBUoieBKjZSDlRrxyOQoU+hWj0GTWbwqncCPrXq4Rj6GNzKnYBHrXoQpjkDr3oHKJd65W5M61C86t9A1XEq0xD2iXiVW0FVcfRbkeIduJW/gqrglEciYzH8ys2gSnjlNqRsQZVvAlXAL6cR2nBU5UbwcygRRZmHD/oV9ga3fbSj38/oX8aUsxLV+8FBjP4tqOrdBLltBFin4lTvJWD0AmmdFMYfB3lRpHUcziBGL80jcOtP08/opXEgjrOEAUY/C8d9bpCeTN3ZTP8YgKaNwfe7G4xeakPxVQ0/zFUeMHoTz9sFgBAJkC24Ya5yIWx0bTSO25+rXEc3plN3lodawzAPHJSrXCdiHUalkQfFIGIdTakaxFgLLCL2CRSqAb8VwiZhn0y+8rdQR4hHTiNb7mfyUZKRM+gt3Qx4wa+U6Jn0lW5C4SBFjFTsbfSUbkapGlLEaIq9jZ7iX1BUkCJKJvYOuku34KsyUkRojr2dntKt+KqEwKI1/k66G9qgJfYuesq3hQxcpyX2DnrLt4c5/SXNsbfRV74zrLsraYqeTl/l3rCmqiATOYVs5cHGXIaUfQKl6sMNxp6wj6JcfbLh05h5MKX64oYPI8Ycau6KhraNqbjOxsb6TH0cytuDH86N0LXhaJQa4y6abEMi8fz+uREpdC2N1z/uIqKY2ghcd33DR7YxBc99ruFT05iH6ywe0OahePUnGz42rKPwag+H2sS0jw0ZvQIsDPskVPjwABG0yClQvR3wQ0b/J4Qxnf+kvSaM3h6iDh35oVe07L0bvrOf0e8zJppewuhHMhDDbYE2uFamidCHv5jRyxHQyOpnIrURA/HJmEhteBhXD2Ag9WEI2RRqHU0bhtT6mb2GpnUgZSv9PFeTQ5CyPdQSKdvR5BAGGH0bmuwItUDKljAuXw91BkMbRsBzg8HbINdOP6OPYOgjGsxeCCNMadvPayWmMUgjMPWRgxi9wtRHNz6v8DH1UY1qRAoPyxjVmHug8MMxg4E4eksfMyg7qsLSRw/ygcDWR9MPTYUI4swHtB7q/tw3BpY+8kWM3tJGNdYnhRluv3E0WMbIxtOqwMLWRzTGFAQmpjZ80DwCE0MfgSZioTYwtWFoMt3wqaENQ9P6505o6FpHWEd4kG7kP5JoWjua1u/TfgY/2KfNaNrQQT5tQtOGN3wqRBI5yMdCRJGDfIywguuy4VMNoY0aaEeGesCnQhsx0K58aFyz+4Ap9cper8KEEE1CiAeEEBvCv5l/sIwthFgkhFgR1vz4yv/k8y+1/ejmZUzowyH9fVTpN2DMQcY/jjKn4Rd/AfoMtMQFCOsAnMI1SGMKRuIzaNax1As/QOjjsVJfQI+eRi3/XaQ2Cjv1JczYu6mEjD6auhLb+xil3DeQsoVY+mv43h6Kua8gZYZ46mvE/D7yuSsQIkYy/XWUKpPPfgkhzFB75LKXA5BKfx2ERl/2MlB1Mumvg4jSm70M3y/TnP4KUqbpyV6O72dpSl+JprUj+mw8v4um1OXo+qigPqi3k5bUZZj6BFA+jruF5tTnsYxpKOVQdzfQkvwstjUH369SddfQmryYmHUwvqpQqS+nJXkBcfsofL9Iub6U1uTHSdjH4/tlirUFtCQ+TDr6Zny/QqH6OM3x95OJvRVfOeQrD9EcfxfNsXei8MiV7yUTPYO25AcBnb7yHaSjpzAk+RE0EaW79FdSkeNpT3wUXTbTVbyBpH0UQ5Ifw9Q76Cz8joR1GB3Jj2PrY9hb+DVxaz5DU+cRs6awO/cLYuasxjjDrvw1RI2pDEtdTMo+gl25H2EbExie/hxN0ZPYlfselj6a4ZkvUY2/k93ZqzC14QxrupKa+2F2930DQ2tnaNNXcN3d7M5+DU1mGJr5Gp7fw57sFUiRpCPzNXy/SGf2ywgs2pu+jlIO3dnLEQha0l8HJD3ZywCXpvTXkcKmL3sZSlVIp76KlGly2ctQKkcy9RU0rZVi9kv4fjfx1JeCjj2n43t7iCUvRdPHUUbhe9uIJD+Ppk8FXHx3E1biM2jmLKCG7zyPmbgIaR6Iq0ooZzV6/HyEdVgQteQsD+Poh/7H7tHX3F4fwvEF4CGl1FVCiC+E+vMvWaYGHKuUKorgyeJJIcQ9SqmFr/DzL7L9Hf3LmFI+qnI7OMvA24WKfgBV+Ts4z4K3DeV+EL9yN8JZivJeQMU+iFe9F5ylKHcDKvYhvOoD4CzGd9fiex/Crz0aMv7V+O6H8GpPIerPoISF73wQ11kB9YX4wsBz34/vvoCsPw3o+M4aPL8bVX8ShcStrwRVg3qQH86rP4sSFtQeBXyc+hI02YKoPYyGi1tfiNTH4NceAOXg1J4AYxaqdh9C1XBqjyE4HFW9B6nK1KsPodk6fvUupCpSr96HLpOo2t/R/TxO9S4MrQ2/dju630e9cjuWNhqvehu630W9chuuMRm3eiuat4dquYmoMQuv+hcMbyf1SgzPOph69a9o7hZqFRMvchRu5WYMdyO1so8fOSHUa3GqNdxYMGaguytxKgW82JlUK39Gd5fiVHrx4u8M9TM41b14ifdSLd8UaLUT13s/1cpf0N2FuGorrvdBKuVb0d0FuP5GXPdDVCp/Q3cW4HnP43ofolq5E815Gs9bjet9iFr1HnTnKZS7Atf9ELXqA0jnKXw3hut+gHr1MTTnKZRr4TofoFZfgqg/gRImjvM+XHcDsv4EQhi4zrvxvD3I+uOAxK2/C6VKiNqjgMCpL0cIDVl/DPBx60vQZBpRexSBh1d/BvSRqNpDgINbewphTA19XMetPY5uHoyq3o9QFdzqI4iIhNp9SFXCqz6IjMShei9SFfCr9yO1VqjejfSz+NV7EHIEfvUu8HvwKneg6ROCUoJ+J6pyB8o6dt9g9Ap4fWrGvgU4Ovz/98CjvKSjVgFTL4bSCF/9O/cvP/9S28/oX8aU8xyq5/0ETF4LGf1doZZgnYZXvYd+Ri/sk4OOnXqgrePwao8wwOiPwq8/RT/PFcZBuIN4rtBnh2w1ZPj6FHxvC42atNpYXL8LpfKhHoZSNVSYq1zIFpQw8cNc5UIkkbIFzwtrxIoIQo7CdftzlRvoxnRcZ1moNXTzwDDWH0DHtA6n3oixNrDsY6lV+/mtiRl5E5VKEDcvsIlE3ky5chvgI0QEyz6dUvmvgIcQUWKRt4ZJ11yEiBGLvj0snFJHiBjx6DsplG4EqggRIxF9J4XSn1FUwvZ3kSvfhFJlhIiQjL6bfPnmoHPEJhl7N/nyX0Jtkoi9h0L5ryhVAgyS0XdTqNyCCuPqE9F3Uqz8DRUy+njkrZQqd6JCn8bt0yhV7wuZuiBmn0i1+hD94zAR61gqtccbPrPMQ3HqzzR8ahrzwzGQ/hoE0/HdDTTqCuvjwescNDdiBKgyqjHu0oYmdHx/d+jTNJpM44eMHhFF00bgNeZGmBj6FHx3YG6EbszDH8ToDesw/PoTDR/r1jH4tYcbPtWs41C1++hn9NI+ET8c/AUbLXIqVP8W6gha8437BqO32tWhQ9/3ipa9d8sPtgKDK+Zd+3J1NgabECKrlEoP0n1KqX+EbzRgKTAe+KlS6vP/k88Ptn3ga/jfaCLFwJeoDtpQBoJojZfk4TZB9sdDB+1CDmHgR1OoG3leDIRsh0ZcvY6UbWFcPYCG1FoRItXQQmtFyCDXOUiEbBmUKyfgtVI2h/sgEDITlnkLmLcU6eBpLdRCJtG0tsY+ChENmX8/z7VCPtzP6HW0Qe1BLpUOBnguYa6esF0pdG3YQPUh5aPrQ8O4fQAPTet4UW4bXRv6ojh6XRs+aK6CCucN9JsIdegTIV+itXAMYoDZ63rHIG2ga0Pp97HADGPYaWhNHzpo+yb6i/bXRNOGNMYcwAjb+/PC6MFgamMcRkPX2sOaBIHWZBtSpun3qXyRTwMtBvlYyKZwrkXgYynSCPlin8pBPkXEkNognwk7TCvcr8PrcJBPg5QG/VrAizThdT2QrwiRZp8wBXj+K3tBd3/djPD1ok7+tajjoZTylFKzgeHAgUKI//W36X508zIm9JGo1Leg9Bsw5yDj56H0SfilXyCM6cjEhQhzDl7hJwhjMnryM2j2kTiFHyC0sZjJL6BHTqZe+A5CG4mVuhzffQf1/LcQWgdW6muY7keo5L6G1FqwU9/E93dTyV6JkCmi6W+h/F7KuS8hRCzUJYq5ywCDePoqwKGY/SIA8fQ3AZ1C9gsoHBKpbyJkNNCqTCL1dYRsIt/3eXyVJZn6Kpo2lFz28/h+N4nUFej6aLJ9Pp63i2TqcgxjMkrV8NxtJFOXYhizUKqC624kkbwE0zwQpYrUnTWkEp/Gto/EV3nq9RUk4xcRiZyA72ep1ZeSjJ9LLHoqvp+jWltIIn428ejb8f0CldoTJGMfIBF7H0qVKVcfIhF9F8n4h1HUKVXuIR49g1T8XJSAYvkOYpGTySTOQwiTQvmvxOzjySTOR8oE+dKfiFpHkUmcj6a1kiteR8Q6lKbEhRjaSLLFX2Gb82hOXoRlTKKv8FNscxZNqU9hW3Ppzf8Qy5hKS+oSYvaR9OS+i6lPoCV1GYnIyfTmrkLXR9OSvpJE7B30Zr+Brg+jJfN1HOfD9OW+gpRttGS+jevtoDd7BVJmaMl8B8/voi97OVLEyWS+jfKL5LJfRAiLVPoqoE4+eykgSaavQiAoZL8AeMTT30CIKKXsF1CqSiz1NaRMU8x+AeUXiKW/gpTtlLOXovweIqkrkPpIqlmF7+3FTn0RTZ9ATTkobztm4gtIYzpKVVDeZozEZ5DmvIDJu+vR4hchrUNx/TzKWYOWOB9pHY2v8ihnRRBHr+8jxcHhNWP0L1fHQwixVwjRoZTaLYToADr/xbqyYRW/kwjqdP+PPg/7O/qXNaVUwLvd1aAKqOjHUfXHwV2FUn3g9+DXnkK5q1B+J3jd+LUFCOe5gOn7e/Hri8FZhfJ2BGF0/Xlz3C0obxd+/Vk0dyV4UfC2o5zVSHcZCBvlbcV3tyGdZSAMlLsZ3+9Bd54FNJS7EV/VEPUAb/nOBoQwkfUlgI/vPI/UMsj6IlAufn0VUh+J5jyDpqr4zkokHlp9IZoqB/l7hIFWfxqp8qj6EpRModWfCnht7RmUNgRZfxLD70bVnkbpY9FqT2D7e4OxA3Maeu0JpLcD6o/hm/OQ9cewvK2o+qP41uGI+qNY3iaoPYxvH49Wf5SItw5qD6EipyHrjxDx1iDqD6HU26H2EJa3GmoJVOx9iNqDRLxVyJqFip81oOsC5X8MUXso1B6+fx6E7Vq9iu9/AuoPE/GeQ6sX8L2LoPYoEe85ZD2L7/Wgao8Hmi6U142qPUnEW4lUu/H9Pfj1BZjeCoTaju/txq8vDrQf+FQ5z2K6KxEihvJ24DsrMN3lCBHB97ainE1YznIQJsrdgu91Bj4VGsrdhFIV9PqzgAjGepDIMPWxX1+HpqXQnMVBfnhnNUobhuEsAVVD1Z8Do47mPAOqgnKWg9BCHxeh/ixKxBH1BQg/h6ovBq0VzVkAfg/UnwFtBKL+JMLvgvrTYEwK9W6oPYHSZwba2w61x1D2yftO3ejXB2XfAXwIuCr8e/tLFxBCtAJO2MlHgOOBb7/Sz/9/69vP6P+5KWcVqvd9ISPXUJEzUZU7CJi8FjL6uwh4q0TYJ6NexOiPH8ToBcI8ClUfiLkWxsEoZ0lDo8/Gd5+jn+kLfSrK20KjRq02NmC3KqgnKuQwPFVDhbnKhWwFYaHCXOWIFFK24HthPVERRWqj8d3+GrEG0piB36gnqiPMA/AaeVB0dPMI3PqjBL9rDXTrWNzaAKPX7RPDyTwBvzXsN+NU/0bAqCPokdOpVf4SaBHFst9KrRIwekQUK/IOauWA0SNiWJF3hroa6Oi7qJT+BFRAxLCj76Ja/nNwTkQUO/JuqpWbQJUAGzv6HqrhZB+wsKPvCSeABYzeir6HWuWv4TnVg+1Vb2v42Iq8lVrl76GPJZZ9OrXqPQ0fm9aJ1GsPNnxqmMfi1B9r+FA3D8cfVBdYM+bjDWL0mjEDnI008iPpE/C9PdCYGzESMYjRizB8VjUYfQZNSwfXBYCIoWkjUYMYvTCmoJwVDR9qxjyUs2iQjw9BDWL0mn0MDGL0WMdD7R76GT2NGrGBj6V9WsjovWDcp+lGhPHiEo+vt70mjN5sU4e2vusVLXvvrmv+19sTQjQDNwMjgW3AO5RSvS+p4zGTYKA1iJWGm5VSX325z7/cNvc/0b+cicSgb3gdRAsDzF4D2TxoYT3U/U82RhhfrBF0ChpCNqGEAcoF9FBbodYC/i6iYUeuIWQa5ccbE7YCPl9HeblgOzKN8CuocExIiGTwS4CdgELIBEKmwZMEg6PxQKPR3/EG6+zXVsiDdYKO2EBo/To4hmAMoF/LQboebFNrCbUXbFNrHdDKD8cIwvWjQt48wOil1gJChqfZD7+8RKgVUry4jnCwvn6fyFD7g3TLoFw4GppsGTQ3Qg/mJQzycbA//doIj2fAx6Kxv06gtUHnCx0pgsRyDZ+KJoSIhgPoGlKmUTKO8oMvEiHSCFEKB2MFQqbA14GeAY1E+XuC/Qp9qjwRnG8RR8gMisDHiFio+31qg8y82KeyCTVon5GDfSxCbdA/4CxkMwqD4MtOhdf5gE9pjEG8wU0Br0OaYqVUD3DcP3h/F9Bfx2MlMOd/8vmXs1fV0QshvgucRnBFbAI+rJTK/oPlTgJ+RHCH/FopddWr2e7rZUIfhUpeAaXfgjkLmbgAXx+PKv0CYUxDJj+FMGfjFX+M0CeiJy7Bt47AK3wPoY9FT16KFjkJJ/9thDYCM/VlfOftOPlvILQhmKmv4nsv4OS+ipDNmOlv43s7qOe+DDKFlf4uyu+mnrs8ePpNfQdUiVruUsDASn8HpRyq2SCyyk5/ByF0KtlLQDnY6asQIkYlewlKlYmkvoHQWqhkP4vyc9ipryG1YaHuwU5egdTHUVZVfG83kdSX0Ywp4BfxvO1Ekpeim3NRKofnvkAkeQm6eSjK78Nz12HHL8aIHIvyu/GcVVjxCzAjJ6O8TlxnOXbsHKzoW/H9Ltz6YqzYWdjR9+L7vbj1p7Ci78WOnY3y8zi1R7Aib8eOnxccc/U+LPt0IvELAIda9U4s+ySi8QsBQa1yK6Z1LNH4hQgRoVq+EcM6gmj8IoTIUC3/HsM8mGjik0htKJXSrzCMucSSF6MZ46gUf4puzCSW/Ay6MYty8YfoxhTiic9jWodRyn8HTR9PPHUZVuRNlPLfQtNHkUhdiRt9G8Xc19C0YSTSX8dzP0gpfyVSthFPfxvP20Yp9yWkzBBLX43yuqjkvogQcaLpq1GqQDn7BRAm0fR3QdWpZr8AQmCnvwNIqtlLQHmhTyPUcp8DVcVMfQMhMzjZz6FUATP5VYTWQT17CcrvxUhdidRG4ebqKK8TPXkZwpiEq8oobwd68gsIYza+X0B5W5DxzyDMA/BVFuVuQMYuQthH4vs9KHctInY+wj4BpXqgvhJiH0XoI/9zN+lrbf/FhOPV2Kt9on8AuFQp5Qohvg1cykviOcMQoZ8CJwA7gMVCiDuUUmv+v7X9l5lSCpzl4G0GR4AqgrsSvBeCDIl+HpznkN5moB48iTurA61K4GdRzvMId1OQF8TvQbnPI9yN4HcH2tkQaLkX5Xei3M1IdxPIKHid4G1HuhsBC/w9KC+LdDcAGni7EMpB94IycsLbCcJAd9cDHrjbQUuHugbeVsBHd9eBXwZ3MwgT3X0e/AK4G0GmMNy14GcR7nqENgTLWwd+N8JdD/pYLHct+J0IZy0Y07C8teDvRLhrwD8gbN+BcFeDfwSmuxrD2450n0P5b8J0VmF425DOCpT/Fkz3uaDdWYnyyxjOc+j9WlUwnJXo3o5g7INK2B5opcqYjfZVKFXGcFai9Wu/hO6sJOJtRzhxlF9Cc1YEWpgov4DmPBdoNPCLSHc1EW8bAgUqh6yvCnUd/BzSfZ6ItzX4peX3IZ0NxLxtAX7xexDuJiLuFpB94Xl7IdSdCK8T5W7DdF8Inrb9vQivh4i/GdAR3h6giuVvAgTC2wXIYEwDH+HtQMgklrspuObcbQjNwXA3BPjJ3QpCx/DWg18E9wUQcTT3efBz4G4ImLy7NmDy7nrQRiGcVQGTd9eCMTHQ3q5gfMqfFert4DwH5iFBJ+9tBmcFSp2xjzB61R9Rs8/Za8bow/qxb1dKve8l7x8CXNlfZlAIcSmAUupb/2qd/3lGvwbV8x6CuHkdFXkbqnIbDUZvnxFMHAn5LfaboXofwQ8cCdYJeNUBnivMo0M2GjJ54zBwBngu+lxwV9H4yaxPCxl9kKtcaOODmPn+H03aiGDCVJirHNkGwoIwVzkiHcTWh18EiBhCG41q1BM1EcYMVCNXuY4wD0LVn2pozT4qnIAVMHqsY2EQo8c6EWr9jN4C+9QBfouNst+CX/lLeIwRZORt+JWbgnMiosjIO/AbjD6KjLwTv/zn4ByLKDLyrlBXBumbgDKICDLy7mB9qgzYyOh7BmkLEX03XuXmUBtokXfjVf8aMnk92F7l1oZPZeSt+JU7Qp9qSPs0/OrdDZ9K66RgMlLoU2keG05YcwEBxqEv8ekB4C5nYNxlRuCPcG6E0Cci/U4I50agjQy/QMIQ7f6QXX9X6MMmpMwEnSwE2EQbDo38RWHJS3d5w4cY88J9CrV5KNSfCH2og3UM1B4c5NMTQkbf79OTQ0Yf+JTIaVC5reFT0fxnhDG4zObrb68Jo9db1SHpM1/Rsvf1/Or/bK6bs4F7/sH7w4Dtg/SO8L1/aEKIc4QQS4QQS7q6ul7D3ftfmLAZzH8RiUFaCzUv0eIly8tB7XEGeLSGkHEGcuHIoL2RJ6ZfD+R6R8agEaMtgtz2jTh8AuYuogP7IKLBZxraBhEb2CdhvUQb/98+vlj3H1O/FiCTgzSIF+mAKb9Ypwa2p1S4/GCdGnQO+/WgQ5SpgebG9vulCNc34LMXay34vBqsX9IuBq0P7cXrRwuPR75ED5wfIZMv8mng40E+lXEaud4Rwfkf5NNAv9inL9aR0GeDfRp/sZbxgX0UZqj791H/Fz4WLzkmXuJzBWKQz8LEZvuM+eqVvd5g9i/RjRDiQeAfFYW8TCl1e7hMkIgDbvhHq/gH7/3TMxVOPLgWgif6f7V//04T+lhU4vNQ/h0Y05GJi/D1sajSzxH6FGTi0/jGDFTpJwh9AjJxCco8BL/4fYQ2Gpm8FGGfgJf/FmjDMdJXoJy34ea+BtoQjNRXUe4G3PxXQDRhZL6F8nbg5r4EIokRMno390UQUYz091CqiJv9fIBo0leDcnCznwNAT38HhIGb/SwoBz39bYSI4WQ/C6qMnvomQrbgZD8NKo+e+hpCG47T92lQvejJKxD6BJxsEbw96KkvIYzpQbUjbycy8XmEOT/gtd4WZPzTCOvwIHWyuwERuxBpn4Dv7Q557nlokVNxvd34zkq02EfQou/A9Xfj15eiRT+AFvsAytuLX1+IFn03WuxjKL8Hv/Y4WuRMZOwTKD+PX3sQaZ+CjF2AUmX86r1I63i02IUI5eNVb0daR6HFLwCh45X/gjQPRY9fCCKOV74Bac5HT1wIWite6bdIYzZG4mKENhKvdC3SmIaR+DTSmIZb/AlCn4iZuATPPAC38H2EPhYz+UU861jcwqBxl8hb8PLfAK0DI3Ulyl2Pm/sKaC0Y6W+i3K24+S+DSGGkvxOMWeS+CCKGkf4eqAJe7lIQJloqYPRe7vOAREt9G4TAy34O8NFS3wIRRYWMXqS+DiKDyl0CqohIfhW0DlT2s6CyiMSXQR+Dyn0WvC5E8jIwpqKy+QD9JT4P5hyU3wveNoh/BmEdEkRyuZsgfhHCOgbl7wV3HcTORUTeHAwOO6sg+hGEPuo/eJe+xraPMvpXjW6EEB8CzgWOUyqMA3xx+xsW3ey3/bbf3hj2mqAbrUUdEj/9FS17X/66NxS6ebVRNycRDL4e9Y86+dAWAxOEEGOAncC7gfe+mu3ut/223/bbv8X20Sf6V8vorwESwANCiOVCiF8ACCGGCiHuBlBKucAFwH3AWoLA/9X/bIX7bb/tt/32nzGF8rxX9Hqj2at6oldKjf8n7zcC/0N9N3D3q9nWfttv+22//Vvt9UtT/Lrb/pmx+22/7bf91m9q34yj39/R77f9tt/2G8EDvdr/RL/f9tt+22/7sCm1/4l+v+23/bbf9nV7Iw60vhL7r05TLIToArb+p/cjtBZeXDrsjWj7j+G/x/aF4/hvOoZRSqnWf73YPzchxL0Ex/RKrFspddKr2d7raf/VHf1/kwkhlryRJkj8I9t/DP89ti8cx75wDP9XbH/N2P223/bbftvHbX9Hv9/2237bb/u47e/oX7ld+68X+a+3/cfw32P7wnHsC8fwf8L2M/r99v/au4MXmeM4jOPv94GTgz9gt9xkk3IRuckBiSgHBydHB8rF/6D8B+QiLijlgIPaCy6SaK02p41ycOAm+TjMpDmY2ZlhfXd++7xOM01Tz6+Zefo1zfyeiOi4nNFHRHRcij4iouNS9GNSr6rv1NfqfXV760zTUM+ob9Wf6kz9NE49oi6rK+qV1nmmod5QP6tvWmeZljqvPlWX+u+li60zxWgp+vE9AXZX1R7gPb0h9Fn0BjgNLLYOMomBkfmjwAJwVl1om2oqN4GZ+aPNED+Ay1W1C9gPXJjR12LTSNGPqaoe96+tD/AcmGuZZ1pVtVRVy61zTGEfsFJVH6rqO3AHONk408SqahH40jrH36iqT1X1sn/7G72diaE70NFein46w4bQY/1MNDIf/4e6A9gLvGgcJUbIRc0G/IMh9A1hnOOYQRONzMf6U7cBd4FLVfW1dZ4YLkU/oKoOj3q8P4R+nN4Q+oYtmbWOY0atAvMD9+eAj42ybHrqFnolf6uq7rXOE6Plq5sxDQyhnxgxhB7r5/fIvLqV3sj8g8aZNiVV4DqwVFXXWueJtaXox/fHIfRZo55SV4EDwEP1UetM4+jKyLx6G3gG7FRX1fOtM03hIHAOONT/LLxSj631pGgnl0CIiOi4nNFHRHRcij4iouNS9BERHZeij4jouBR9RETHpegjIjouRR8R0XG/APW6Ox/7bOSrAAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"points = data_input.extract(['x', 'y']).detach().numpy()\n",
|
|
"truth = data_output.detach().numpy()\n",
|
|
"\n",
|
|
"plt.scatter(points[:, 0], points[:, 1], c=truth, s=8)\n",
|
|
"plt.axis('equal')\n",
|
|
"plt.colorbar()\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "de7c4c83",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Inverse problem definition in PINA"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c46410fa-2718-4fc9-977a-583fe2390028",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then, we initialize the Poisson problem, that is inherited from the `SpatialProblem` and from the `InverseProblem` classes. We here have to define all the variables, and the domain where our unknown parameters ($\\mu_1$, $\\mu_2$) belong. Notice that the Laplace equation takes as inputs also the unknown variables, that will be treated as parameters that the neural network optimizes during the training process."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "8ec0d95d-72c2-40a4-a310-21c3d6fe17d2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"### Define ranges of variables\n",
|
|
"x_min = -2\n",
|
|
"x_max = 2\n",
|
|
"y_min = -2\n",
|
|
"y_max = 2\n",
|
|
"\n",
|
|
"class Poisson(SpatialProblem, InverseProblem):\n",
|
|
" '''\n",
|
|
" Problem definition for the Poisson equation.\n",
|
|
" '''\n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})\n",
|
|
" # define the ranges for the parameters\n",
|
|
" unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})\n",
|
|
"\n",
|
|
" def laplace_equation(input_, output_, params_):\n",
|
|
" '''\n",
|
|
" Laplace equation with a force term.\n",
|
|
" '''\n",
|
|
" force_term = torch.exp(\n",
|
|
" - 2*(input_.extract(['x']) - params_['mu1'])**2\n",
|
|
" - 2*(input_.extract(['y']) - params_['mu2'])**2)\n",
|
|
" delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])\n",
|
|
"\n",
|
|
" return delta_u - force_term\n",
|
|
"\n",
|
|
" # define the conditions for the loss (boundary conditions, equation, data)\n",
|
|
" conditions = {\n",
|
|
" 'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],\n",
|
|
" 'y': y_max}),\n",
|
|
" equation=FixedValue(0.0, components=['u'])),\n",
|
|
" 'gamma2': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': y_min\n",
|
|
" }),\n",
|
|
" equation=FixedValue(0.0, components=['u'])),\n",
|
|
" 'gamma3': Condition(location=CartesianDomain({'x': x_max, 'y': [y_min, y_max]\n",
|
|
" }),\n",
|
|
" equation=FixedValue(0.0, components=['u'])),\n",
|
|
" 'gamma4': Condition(location=CartesianDomain({'x': x_min, 'y': [y_min, y_max]\n",
|
|
" }),\n",
|
|
" equation=FixedValue(0.0, components=['u'])),\n",
|
|
" 'D': Condition(location=CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]\n",
|
|
" }),\n",
|
|
" equation=Equation(laplace_equation)),\n",
|
|
" 'data': Condition(input_points=data_input.extract(['x', 'y']), output_points=data_output)\n",
|
|
" }\n",
|
|
"\n",
|
|
"problem = Poisson()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6b264569-57b3-458d-bb69-8e94fe89017d",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then, we define the neural network model we want to use. Here we used a model which imposes hard constrains on the boundary conditions, as also done in the Wave tutorial!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "c4170514-eb73-488e-8942-0129070e4e13",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = FeedForward(\n",
|
|
" layers=[20, 20, 20],\n",
|
|
" func=torch.nn.Softplus,\n",
|
|
" output_dimensions=len(problem.output_variables),\n",
|
|
" input_dimensions=len(problem.input_variables)\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "16e1f085-7818-4624-92a1-bf7010dbe528",
|
|
"metadata": {},
|
|
"source": [
|
|
"After that, we discretize the spatial domain."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "e3e0ae40-d8c6-4c08-81e8-85adc60a94e6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"problem.discretise_domain(20, 'grid', locations=['D'], variables=['x', 'y'])\n",
|
|
"problem.discretise_domain(1000, 'random', locations=['gamma1', 'gamma2',\n",
|
|
" 'gamma3', 'gamma4'], variables=['x', 'y'])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b272796a-888c-4795-9d88-3e13121e8f38",
|
|
"metadata": {},
|
|
"source": [
|
|
"Here, we define a simple callback for the trainer. We use this callback to save the parameters predicted by the neural network during the training. The parameters are saved every 100 epochs as `torch` tensors in a specified directory (`tmp_dir` in our case).\n",
|
|
"The goal is to read the saved parameters after training and plot their trend across the epochs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "e1409953-eb1b-443b-923d-c7ec3af0dfb0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# temporary directory for saving logs of training\n",
|
|
"tmp_dir = \"tmp_poisson_inverse\"\n",
|
|
"\n",
|
|
"class SaveParameters(Callback):\n",
|
|
" '''\n",
|
|
" Callback to save the parameters of the model every 100 epochs.\n",
|
|
" '''\n",
|
|
" def on_train_epoch_end(self, trainer, __):\n",
|
|
" if trainer.current_epoch % 100 == 99:\n",
|
|
" torch.save(trainer.solver.problem.unknown_parameters, '{}/parameters_epoch{}'.format(tmp_dir, trainer.current_epoch))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fc6e0030-f6ae-40cf-a3b3-d21d6538e7f2",
|
|
"metadata": {},
|
|
"source": [
|
|
"Then, we define the `PINN` object and train the solver using the `Trainer`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "05a0f311-3cca-429b-be2c-1fa899b14e62",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"### train the problem with PINN\n",
|
|
"max_epochs = 5000\n",
|
|
"pinn = PINN(problem, model, optimizer_kwargs={'lr':0.005})\n",
|
|
"# define the trainer for the solver\n",
|
|
"trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=max_epochs,\n",
|
|
" default_root_dir=tmp_dir, callbacks=[SaveParameters()])\n",
|
|
"trainer.train()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aab51202-36a7-40d2-b96d-47af8892cd2c",
|
|
"metadata": {},
|
|
"source": [
|
|
"One can now see how the parameters vary during the training by reading the saved solution and plotting them. The plot shows that the parameters stabilize to their true value before reaching the epoch $1000$!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "dd328887-7c18-4b96-ada4-c9eec630c069",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAn4klEQVR4nO3de3xU9Z3/8deHEEggCIIQMaDgFi8ICjXFC2031FoU24Vq97Faa123LrXVvdQuXW0fj612t9bVdre22lrWG+5W2fZXL6xS8Rqt2lbwCl5QClgDVAiKkEAgJJ/fH+ckTJKZyZnJzJxk5v18POYxc77ne875fEOYT77n8v2auyMiIpKpQXEHICIiA5MSiIiIZEUJREREsqIEIiIiWVECERGRrCiBiIhIVmJNIGZ2m5ltNbM1Kdabmf3IzNaZ2Stm9uGEdWeY2dpw3RWFi1pERCD+HsgdwBlp1p8JTAlfC4GfAphZGXBTuH4qcJ6ZTc1rpCIi0kWsCcTdnwLeS1NlPnCnB34HjDKz8cAsYJ27r3f3fcDSsK6IiBTI4LgD6EUN8E7CckNYlqz8pGQ7MLOFBL0XKisrT5w4cWLaA7a3tzNoUNwds8JTu0uL2l16+tL2N998s9Hdx3Yv7+8JxJKUeZrynoXui4HFALW1tb5q1aq0B6yvr6euri6zKIuA2l1a1O7S05e2m9nbycr7ewJpABK7DBOAzcCQFOUiIlIg/b0vtwz4Yng31snAB+6+BVgJTDGzyWY2BDg3rCsiIgUSaw/EzO4G6oBDzKwB+DZQDuDuNwPLgXnAOmA3cFG4br+ZXQasAMqA29z91YI3QESkhMWaQNz9vF7WO3BpinXLCRKMiEhetba20tDQQEtLS9yhZG3kyJG8/vrraetUVFQwYcIEysvLI+2zv18DERGJXUNDAyNGjGDSpEmYJbuHp//btWsXI0aMSLne3dm+fTsNDQ1Mnjw50j77+zUQEZHYtbS0MGbMmAGbPKIwM8aMGZNRL0sJREQkgmJOHh0ybaMSiIiIZEUJRESkBHz1q19l3LhxTJs2LWf7VAIREcmx+17cxOxrH2fyFQ8y+9rHue/FTXGHxPnnn89DDz2U030qgYiI5NB9L27iyntWs2nHHhzYtGMPV96zus9JZOPGjRxzzDFcfPHFTJs2jfPPP59HH32U2bNnM2XKFJ577jmuuuoqvv/973duM23aNDZu3AjA7NmzGT16dJ9i6E638YqIZODq/3uV1zbvTLn+xT/uYF9be5eyPa1tfOP/vcLdz/0x6TZTDzuIb3/muF6PvW7dOn75y1+yePFiPvKRj3DXXXfx9NNPs2zZMq655hpmzJiRUVv6Sj0QEZEc6p48eivPxOTJk5k+fTqDBg3iuOOO47TTTsPMmD59emdPo5DUAxERyUBvPYXZ1z7Oph17epTXjKrkf798Sp+OPXTo0M7PgwYN6lweNGgQ+/fvZ/DgwbS3H0hU+X5yXj0QEZEcWjT3aCrLy7qUVZaXsWju0Xk/9qRJk3jhhRcAeOGFF9iwYUNej6cEIiKSQwtm1vC9s6dTM6oSI+h5fO/s6SyYWZP3Y59zzjm89957zJgxg5/+9KccddRRnesuuugiTjnlFNauXcuECRO49dZb+3w8ncISEcmxBTNrcp4wJk2axJo1azqX77jjjqTrHn744aTb33777WnHwsqGeiAiIpIVJRAREcmKEoiIiGRFCURERLKiBCIiIlmJNYGY2RlmttbM1pnZFUnWLzKzl8LXGjNrM7PR4bqNZrY6XLeq8NGLiJS22BKImZUBNwFnAlOB88xsamIdd7/e3We4+wzgSuBJd38vocqccH1toeIWERlo3nnnHc466yyOPfZYjjvuOG644Yac7DfO50BmAevcfT2AmS0F5gOvpah/HnB3gWITEcnO9VOgeWvP8uHjYNFbhY8HGDx4MN/97nf52Mc+xq5duzjxxBM5/fTTmTp1au8bpxHnKawa4J2E5YawrAczGwacAfwqodiBh83seTNbmLcoRUQykSx5pCuPqC/DuY8fP75zpN4RI0Zw7LHHsmlT3+coibMHkmzyXU9R9zPAM91OX812981mNg54xMzecPenehwkSC4LAaqrq6mvr08bVFNTU691ipHaXVrU7syMHDmSXbt2ATD0iW8zaOurKeum+1Ldf8vcpOXt445j75yr08bQ1NTEunXruOOOO/jBD35AXV0dS5Ys4de//jXLly/nO9/5DtOnT6e8vLwz1vb2dpqamti1axdtbW3s2rWLt99+mxdeeIGpU6d21kvU0tIS+WcUZwJpACYmLE8ANqeoey7dTl+5++bwfauZ3UtwSqxHAnH3xcBigNraWq+rq0sbVH19Pb3VKUZqd2lRuzPz+uuvHxgGpHwIlGX31Tk41XblQxjSyzAjVVVVTJ48mZNPPhmA6dOnM3fuXA466CBmzZrFtddeS21tLUOHDu2MddCgQVRVVTFixAh27dqFmXHhhRdyww03UFOTfKiViooKZs6cGa09kWrlx0pgiplNBjYRJInPd69kZiOBPwe+kFA2HBjk7rvCz58CvlOQqEWktJ15bfr1V41Mve6iB/t06L4M597a2sp5553H+eefz9lnn92nODrElkDcfb+ZXQasAMqA29z9VTO7JFx/c1j1s8DD7t6csHk1cK+ZQdCGu9w9t5P9iogMMJMmTeKBBx4Aug7n7u5ceumlHHvssVx++eU5O16so/G6+3Jgebeym7st3wHc0a1sPXBCnsMTEcnc8HGp78LKs3POOYc777yTGTNm8JGPfKRzOPdnnnmGpUuXMn369M6L6ddccw3z5s3r0/E0nLuISC7l6VbdvgznPmnSJHbu3Knh3EVEpH9QAhERkawogYiIROCe6jG14pFpG5VARER6UVFRwfbt24s6ibg727dvp6KiIvI2uoguItKLCRMm0NDQwLZt2+IOJWstLS29JoeKigomTJgQeZ9KICIivSgvL2fy5Mlxh9En9fX1kZ8wj0qnsEREJCtKICIikhUlEBERyYoSiIiIZEUJREREsqIEIiIiWVECERGRrCiBiIhIVpRAREQkK0ogIiKSFSUQERHJihKIiIhkJdbBFM3sDOAGoAy4xd2v7ba+Drgf2BAW3ePu34myrRSh66eknms6T9OISo6k+7eDzP5dU+0LA5INt36gvA6gPsKxI+yrT+WFaHe3Y9RB17bn4P9MbAnEzMqAm4DTgQZgpZktc/fXulX9jbt/OsttJRvZfFFn8ct93yfruX7FWjbv2MNhoypZNPdoFjxal/rYSfdPUH7VyIyOndF/0AJ/yUU+dh++zOogP1+kqX4e6f7tUkn575pKqrk6UpSnO3am+8rlsXPV7t6OkQNx9kBmAevcfT2AmS0F5gNRkkBftpUOCV9ydXDgCyWV5q3c9+Kmnl/6M2vS/EKm/uVecP9UFgBUAC0Efc00x85chv+xsvySS/ozyfTnEeeXXC6PkaMvJhkY4kwgNcA7CcsNwElJ6p1iZi8Dm4F/cvdXM9gWM1sILASorq6mvr4+bVBNTU291umvTn3mQoa07uhRvq98FM/OXtKjvC6L/+zJvvSbHhhJVcZ7itc1dz3Cr95sZXtLO2Pql3POUeV8M8t9ZZQIS0FGfz1LXHLxPRdnArEkZd3/rHkBOMLdm8xsHnAfMCXitkGh+2JgMUBtba3X1dWlDaq+vp7e6vRb9TuSFg9p3ZG8TfW5OWxV2we52VEBffPNzwUJo2OCtjdjDEYkBrn4noszgTQAExOWJxD0Mjq5+86Ez8vN7CdmdkiUbaUb/VUoIjkW5228K4EpZjbZzIYA5wLLEiuY2aFmZuHnWQTxbo+ybclp3RN3BHnXMnRM3CFIjrUMHXPgIn6fJTsxkaZ8+Lg0x85wXzk9dqayOEaOjh1bD8Td95vZZcAKgltxb3P3V83sknD9zcDngK+Y2X5gD3CuuzuQdNtYGlJoqe7usZgf6Ul5l1Squ3gy33/ForeSX7BOdedWDo8N5OgCcfKYHMOSlLcMHUPF4LL83mqa0zu9Urtv/mvJb8BIJQ+3bQ+EU9Qt3zuSir3be5YPHUPFleuz3m8+2h7rcyDuvhxY3q3s5oTPNwI3Rt22JKT6EvP2nB2iZegYHjrjNz3/s98/NfVGmf6HzvLLYcHMmp5fOjMzPHa603lXZXg9J0f7Mkh9h1se5O2LNM3PI+m/XTol+mxPxZXrC/q70BexJhBJI+VzBKlt85GMtcy+ADv+Kty0Yw81Cb+oC6DnL+yjKXoZ2XSHi+XLIVXPK4ufScZfsP1RDn8epWyg/C4ogfRXWZwu+QT/xa6W/T3KN1Z8PuU2Hb+okf4i1Zd+T8XyM8kV/TxKihJIEfnXBdO48p7V7Glt6yyrLC9j1+DRjNj/Xo/6LUPHdN7FWlISvuQGwjlxkf5KCaSIdHR5u587HTFzw4A5pyoiA4cSSD+Q9Ms9w3109CZSnTsdKOdURWTgUAKJ2X0vbupy2mnTjj18/RcvsWBomm0yvR1SRCQPlEBidv2KtV2uWQAM92ba3Ciz5M8FqDchIv2BEkjMNu/o/gS5893yW3GMJz92F99cWaGehoj0S0ogMWpta2f40DKa9h7ogfxl2ZN8pux3/Gzw+Xz5tHk8c1qMAYqIpNFrAjGzYcDXgcPd/W/NbApwtLs/kPfoikzixfLqgyoYNqSMJ1jI2IqeD/9dWPZQDBGKiEQXpQdyO/A8cEq43AD8ElACyUD3i+V/2tkCkDR5AEnHwhER6U+ijMD3Z+5+HdAK4O57SD30pKSQ7GK5iMhAFiWB7DOzSsKhN83sz4C9eY2qCPW8WC4iMrBFSSDfBh4CJprZz4HHgG/kNaoiNH5USQ4aIiJFrNcE4u6PAGcDfw3cDdS6e31+wyo+syaN7lFWWV4WQyQiIrnRawIxs48DxwG7gJ3A1LBMIvrTBy088tq7HHvoCGpGVWBAzahKvv/piaSdTUxEpB+LchfWooTPFcAsgruyPpGXiIrQvz74GvvbnZ9dUMvhY4YdWPHA18AMvvwbOHR6fAGKiGSh1wTi7p9JXDazicB1eYuoyDz15jYefGULl59+VNfksel5WHU7nHSJkoeIDEjZTKTdAEzLxcHN7AwzW2tm68zsiiTrzzezV8LXs2Z2QsK6jWa22sxeMrNVuYgn11pa2/iX+9cw+ZDhLPz4kQdWtLfBg1+HqnEw58r4AhQR6YMoT6L/mPAWXoKEMwN4ua8HNrMy4CbgdIKktNLMlrn7awnVNgB/7u7vm9mZwGLgpIT1c9y9sa+x5FrHE+ebwlt3L/nzI6n44THJZ8H7ca1mcRORASnKNZDEv+73A3e7+zM5OPYsYJ27rwcws6XAfKAzgbj7swn1fwdMyMFx86r7E+cAS559myvKUkxRm8XUtSIi/YG59xwyvCAHNvsccIa7XxwuXwCc5O6Xpaj/T8AxCfU3AO8T9I5+5u6LU2y3EFgIUF1dfeLSpUvTxtXU1ERVVVV2jQK+Xr+b7S09f6bp5iWvr7s/6+PlSl/bPVCp3aWlVNsNfWv7nDlznnf32u7lKXsgZraaA6euuqwC3N2PzyqSrvvpLmk2M7M5wJeAjyYUz3b3zWY2DnjEzN5w96d67DBILIsBamtrvbf5r/s6R/Z7Dz2Y8Tb9YU7uUp0bXO0uLaXabshP29Odwvp0To/UUwMwMWF5ArC5eyUzOx64BTjT3TtHGHT3zeH7VjO7l+CUWI8EUmiHjarsvPYhIlLMUt6F5e5vp3vl4NgrgSlmNtnMhgDnAssSK5jZ4cA9wAXu/mZC+XAzG9HxGfgUsCYHMfXZpXP+rEeZnjgXkWIU5Un0k81spZk1mdk+M2szs519PbC77wcuA1YArwO/cPdXzewSM7skrPYvwBjgJ91u160Gnjazl4HngAfdvV9MoNHS2g7AuBFDO584/97Z02HI8OQb6IlzERmgotyFdSNB7+CXQC3wReBDuTi4uy8Hlncruznh88XAxUm2Ww+c0L08bu7OXc/9kRkTR3HfpbMPrNi/Dx4/CCbMgi/eF1t8IiK5FOlBQndfB5S5e5u73w7MyW9YA9Oqt99n3dYmPj/r8K4rXr0Hdm2BU5LeYCYiMiBF6YHsDq9RvGRm1wFbgBTnY0rbXb//IyOGDubTJ4w/UOgOv70Rxh4DH9IE5yJSPKL0QC4I610GNBPcOXVOPoMaiHbs3seDq7ewYGYNw4Yk5OWNv4E/rYaTvxoMnCgiUiSi9EA+DCx3953A1XmOZ8D61Qub2Le/nfO6n7569kYYdggc/1fxBCYikidReiB/AbxpZv9tZmeZWZSkU1LcnbvDi+dTDzvowIptb8JbK2DW30K5ZiQUkeISZUbCiwjuuvol8HngD2Z2S74DG0hSXjz/3U+gbCjUfimewERE8ihSb8LdW83s1wRDjVQSDHrY4/baUtXl4vn1U3oOkPj9DwXPe2jUXREpIlEeJDzDzO4A1gGfIxhWZHzajUpIj4vnqUbX1ai7IlJkovRA/hpYCnzZ3ffmN5yBo/ucH4eO1DUOESktUaa0PbcQgQwkyeb8uPHxddSMqmRBfGGJiBRUNlPalrzrV6ztkjwA9rS2cf2KtTFFJCJSeEogWdicYrj2VOUiIsUobQIxszIz+59CBTNQHDaqMnX58LHJN9KouyJSZNJeA3H3NjMba2ZD3H1foYLq7xbNPbrHNZDK8jIWzT0aRt0GSz4Dn/8FHDU3xihFRPIryl1YG4FnzGwZwVhYALj7f+QrqP5uwcwaAC7/xUu0ezDnx6K5RwflTywBGwSHnxxzlCIi+RUlgWwOX4OAEfkNZ+A47dhxtDt844yj+WpdwvQoG5+BQ4+HipHxBSciUgBRbuO9GoKpY929ubf6pWJj424AjjwkYWT71hZoWBmMfSUiUuSiPIl+ipm9RjDtLGZ2gpn9JO+R9XPrG5sAmHxI1YHCTaugbS8cMTvFViIixSPKbbw/BOYC2wHc/WXg47k4eDhMylozW2dmVyRZb2b2o3D9K2b24ajb5tvGxt2YwRFjhiUUPgMYHHFKocMRESm4qFPavtOtqC1pxQyYWRlwE3AmMBU4z8ymdqt2JjAlfC0EfprBtnm1obGJw0ZWUlFedqDw7afh0GlQeXAhQxERiUWUBPKOmZ0KuJkNMbN/Ijyd1UezgHXuvj68RXgpwSi/ieYDd3rgd8AoMxsfcdu82tDYzJFjE65/7N8L76yEIz5ayDBERGIT5S6sS4AbgBqgAXgY+GoOjl0DJPZsGoCTItSpibgtAGa2kKD3QnV1NfX19WmDampq6rWOu/Pmn3ZzymGDO+uO3PEaM/fvYU3TSBp72b4/itLuYqR2l5ZSbTfkp+1REsjR7n5+YoGZzQae6eOxk00Q7hHrRNk2KHRfDCwGqK2t9bq6urRB1dfX01udxqa97FnxKB89/ijqPjo5KHxqJQDTzvoyDBuddvv+KEq7i5HaXVpKtd2Qn7ZHOYX144hlmWoAJiYsTyB43iRKnSjb5s2GxuBu5smJp7A2PgPjjhuQyUNEJBspeyBmdgpwKjDWzC5PWHUQUJZ8q4ysBKaY2WRgE3AuwZS5iZYBl5nZUoJTVB+4+xYz2xZh27zZsC1IIJ3PgLS1wju/h5lfKFQIIiKxS3cKawhQFdZJfAJ9J8HMhH3i7vvN7DJgBUFCus3dXzWzS8L1NwPLgXkEsyHuBi5Kt21fY4pqfWMz5WVGTcegiptfhNbdMEkX0EWkdKRMIO7+JPCkmd3h7m/n40l0d19OkCQSy25O+OzApVG3LZSNjc0cPnoYg8vCM4Abnw7e9QChiJSQKNdADtOT6F1taGzu+gT6xqdh7DEw/JD4ghIRKbBYn0QfiNrbnQ3bE54BadsfXP/Q6SsRKTGxPYk+UG3+YA/79rczueMC+paXYV+TTl+JSMmJ8hxIlyfRgb8nN0+iD0gdt/BOGhMmkLd1/UNESlO2T6InvbBdCjY0NrNy6FcY+98fdF3xg6OCaWsXvRVPYCIiBRZlPpBG4Pze6pWK9duaGWsfJF/ZvLWwwYiIxKjXBBI+rPd3wKTE+u7+F/kLq//qOIUlIlLqopzCug+4Ffg/oD2v0QwASiAiIoEoCaTF3X+U90gGgH3722l4fzcMjTsSEZH4RUkgN5jZtwkunu/tKHT3F/IWVT/1x/d20550zF8RkdITJYFMBy4APsGBU1geLpeUjtNXrZWHUL6nsWeF4eMKHJGISHyiJJDPAkeGM/+VtA2NTQDs/rs3GDmsHJZ8Bvbvgy+tiDkyEZHCi/Ik+svAqDzHMSBsaGxm9PAhQfIAaG7U+FciUrKi9ECqgTfMbCVdr4GU3G2867c1HxjCBKB5G0xMOpOuiEjRi5JAvp33KAaIDY3NfPyoscFCexvs3g7Dx8YblIhITKI8if5kIQLp75r27mfrrr0HeiC73wNvVwIRkZLV6zUQMzvZzFaaWZOZ7TOzNjPbWYjg+pONjd2msW3eFrzrGoiIlKgoF9FvBM4D3gIqgYvDspLScQvv5LHdEkiVbt0VkdIUdT6QdUCZu7e5++1AXV8OamajzewRM3srfD84SZ2JZvaEmb1uZq+a2T8krLvKzDaZ2Uvha15f4omixzDunT0QncISkdIUJYHsDucBecnMrjOzrwHDe9uoF1cAj7n7FOCxcLm7/cDX3f1Y4GTgUjObmrD+P919RvjK+9zoGxqbqRlVSUV5WVDQHD5IqAQiIiUqSgK5IKx3GdAMTATO6eNx5wNLws9LgAXdK7j7lo7hUtx9F8EkVjV9PG7W1jc2M+mQYQcKmreBlUHFqLhCEhGJlbmnHtzJzMqAJe7+hZwe1GyHu49KWH7f3XucxkpYPwl4Cpjm7jvN7Crgr4GdwCqCnsr7KbZdCCwEqK6uPnHp0qVpY2tqaqKqqqpLmbtz6WO7OXn8YL54XDCS4lFrb2TM9lX89tQ70u5voEjW7lKgdpeWUm039K3tc+bMed7da3uscPe0L2AFMKS3ekm2exRYk+Q1H9jRre77afZTBTwPnJ1QVg2UEfSMvgvcFiWmE0880XvzxBNP9Chr3NXiR/zzA37Lb9YfKLzrXPefnNrr/gaKZO0uBWp3aSnVdrv3re3AKk/ynRrlQcKNwDNmtozgFFZH4vmPdBu5+ydTrTOzd81svLtvMbPxQNKp/MysHPgV8HN3vydh3+8m1Pkv4IEI7cjKfS9u4t8efA2AnzyxjjHDh7BgZk1wCku38IpICYuSQDaHr0HAiBwddxlwIXBt+H5/9wpmZgQTWb3ePVl1JJ9w8bMEPZucu+/FTVx5z2r2tLYBsL15H1fesxqABc3b4OBJ+TisiMiAEOVJ9KvzcNxrgV+Y2ZeAPwJ/CWBmhwG3uPs8YDbBBfzVZvZSuN03Pbjj6jozm0EwrPxG4Mt5iJHrV6ztTB4d9rS2cf2KtSxob9Tw7SJS0qLMiT4W+AZwHFDRUe7uWc8H4u7bgdOSlG8G5oWfnwYsxfYXZHvsTGzesSdp+Xs7dkBFk05hiUhJi3Ib78+BN4DJwNUEf/GvzGNM/cZhoyqTlh87MpwaRc+AiEgJi5JAxrj7rUCruz/p7n9D8GBf0Vs092gqOx4cDFWWl/H3J40KFpRARKSERbmI3hq+bzGzswguqE/IX0j9x4KZwXOL169Yy+YdezhsVCWL5h5N3bDgQroSiIiUsigJ5N/MbCTwdeDHwEHA1/IaVT+yYGZNZyLp9MLjwbuugYhICUuZQMysArgE+BDBECK3uvucQgXWr2kodxGRtNdAlgC1wGrgTOAHBYloIGhuhPLhMKSvY0qKiAxc6U5hTXX36QBmdivwXGFCGgCat0GVrn+ISGlL1wPpuHiOu+8vQCwDR/M2XUAXkZKXrgdyQsLUtQZUhssGuLsflPfo+qvmRhg1Me4oRERilTKBuHtZqnUlr3kr1MyMOwoRkVhFmtJWErS3Bz0QncISkRKnBJKplh3gbUogIlLylEAy1fkMiBKIiJQ2JZBM6SFCERFACSRznQlEc4GISGlTAslUc2PwrlNYIlLilEAy1bQVMBg2Ou5IRERipQSSqeZtMGwMDNJjMiJS2mJJIGY22sweMbO3wveDU9TbaGarzewlM1uV6fZ5oWFMRESA+HogVwCPufsU4LFwOZU57j7D3Wuz3D63mht1B5aICPElkPkEw8UTvi8o8PbZUw9ERAQAc/fCH9Rsh7uPSlh+3917nIYysw3A+4ADP3P3xZlsH65bCCwEqK6uPnHp0qVpY2tqaqKqqirl+o/+5vP86dA5rJvyt2n3M9D01u5ipXaXllJtN/St7XPmzHm+21kgINqUtlkxs0eBQ5Os+lYGu5nt7pvNbBzwiJm94e5PZRJHmHQWA9TW1npdXV3a+vX19aSss38v1Dcz4egZTPh4+v0MNGnbXcTU7tJSqu2G/LQ9bwnE3T+Zap2ZvWtm4919i5mNB7am2Mfm8H2rmd0LzAKeAiJtn3N6BkREpFNc10CWAReGny8E7u9ewcyGm9mIjs/Ap4A1UbfPi+YwTymBiIjElkCuBU43s7eA08NlzOwwM1se1qkGnjazlwmm033Q3R9Kt33eqQciItIpb6ew0nH37cBpSco3A/PCz+uBEzLZPu80kKKISCc9iZ4JDeUuItJJCSQTzdtgcAUMKc3bAEVEEimBZKK5MRjG3SzuSEREYqcEkonmbbr+ISISUgLJRNNWXf8QEQkpgWSiuVEJREQkpAQSlbtOYYmIJFACiarlA2hvVQ9ERCSkBBKVnkIXEelCCSQqPYUuItKFEkhUHQmkaly8cYiI9BNKIFFpGBMRkS6UQKLqSCDDxsQbh4hIP6EEElXzNqg8GMrK445ERKRfUAKJqnmbTl+JiCRQAolKT6GLiHShBBKVnkIXEelCCSQqncISEekilgRiZqPN7BEzeyt8PzhJnaPN7KWE104z+8dw3VVmtilh3by8BtzWCnveD+YCERERIL4eyBXAY+4+BXgsXO7C3de6+wx3nwGcCOwG7k2o8p8d6919eV6j7RzGRKewREQ6xJVA5gNLws9LgAW91D8N+IO7v53PoFLSQ4QiIj3ElUCq3X0LQPje27mhc4G7u5VdZmavmNltyU6B5ZQSiIhID+bu+dmx2aPAoUlWfQtY4u6jEuq+7+5Jk4CZDQE2A8e5+7thWTXQCDjwr8B4d/+bFNsvBBYCVFdXn7h06dK0cTc1NVFVVQXAqc9cyJDWHT3q7CsfxbOzl/QoH8gS211K1O7SUqrthr61fc6cOc+7e2338rwlkHTMbC1Q5+5bzGw8UO/uR6eoOx+41N0/lWL9JOABd5/W23Fra2t91apVaevU19dTV1cXLFw1MnXFqz7o7XADSpd2lxC1u7SUaruhb203s6QJJK5TWMuAC8PPFwL3p6l7Ht1OX4VJp8NngTU5jU5ERHoVVwK5FjjdzN4CTg+XMbPDzKzzjiozGxauv6fb9teZ2WozewWYA3ytMGGLiEiHwXEc1N23E9xZ1b18MzAvYXk30GP4W3e/IK8BiohIr/QkuoiIZEUJJJ1UT57riXQRkXhOYQ0Yi96KOwIRkX5LPRAREcmKEoiIiGRFCURERLKiBCIiIllRAhERkawogYiISFaUQEREJCtKICIikhUlEBERyYoSiIiIZEUJREREsqIEIiIiWVECERGRrCiBiIhIVpRAREQkK0ogIiKSlVgSiJn9pZm9ambtZlabpt4ZZrbWzNaZ2RUJ5aPN7BEzeyt8P7gwkYuISIe4eiBrgLOBp1JVMLMy4CbgTGAqcJ6ZTQ1XXwE85u5TgMfCZRERKaBYEoi7v+7ua3upNgtY5+7r3X0fsBSYH66bDywJPy8BFuQlUBERSak/z4leA7yTsNwAnBR+rnb3LQDuvsXMxqXaiZktBBaGi01m1lviOgRozC7kAU3tLi1qd+npS9uPSFaYtwRiZo8ChyZZ9S13vz/KLpKUeaZxuPtiYHHU+ma2yt1TXpcpVmp3aVG7S08+2p63BOLun+zjLhqAiQnLE4DN4ed3zWx82PsYD2zt47FERCRD/fk23pXAFDObbGZDgHOBZeG6ZcCF4ecLgSg9GhERyaG4buP9rJk1AKcAD5rZirD8MDNbDuDu+4HLgBXA68Av3P3VcBfXAqeb2VvA6eFyrkQ+3VVk1O7SonaXnpy33dwzvqwgIiLSr09hiYhIP6YEIiIiWVECCaUaNmUgM7PbzGyrma1JKEs5DIyZXRm2f62ZzU0oP9HMVofrfmRmyW6x7hfMbKKZPWFmr4fD5fxDWF7s7a4ws+fM7OWw3VeH5UXd7g5mVmZmL5rZA+FyqbR7YxjzS2a2KiwrXNvdveRfQBnwB+BIYAjwMjA17rhy0K6PAx8G1iSUXQdcEX6+Avj38PPUsN1Dgcnhz6MsXPccwQ0PBvwaODPutqVp83jgw+HnEcCbYduKvd0GVIWfy4HfAycXe7sT2n85cBfwQCn8nie0eyNwSLeygrVdPZBAumFTBix3fwp4r1txqmFg5gNL3X2vu28A1gGzwudsDnL333rwm3Yn/XjoGHff4u4vhJ93EdzBV0Pxt9vdvSlcLA9fTpG3G8DMJgBnAbckFBd9u9MoWNuVQALJhk2piSmWfOsyDAzQMQxMqp9BTfi5e3m/Z2aTgJkEf40XfbvD0zgvETxY+4i7l0S7gR8C3wDaE8pKod0Q/JHwsJk9b8GwTVDAtvfnsbAKKSfDpgxwqX4GA/JnY2ZVwK+Af3T3nWlO6RZNu929DZhhZqOAe81sWprqRdFuM/s0sNXdnzezuiibJCkbcO1OMNvdN1swHuAjZvZGmro5b7t6IIF0w6YUm3fDLivWdRiYVD+DhvBz9/J+y8zKCZLHz939nrC46Nvdwd13APXAGRR/u2cDf2FmGwlOPX/CzP6H4m83AO6+OXzfCtxLcDq+YG1XAgmkGzal2KQaBmYZcK6ZDTWzycAU4LmwC7zLzE4O78z4Iv146JgwxluB1939PxJWFXu7x4Y9D8ysEvgk8AZF3m53v9LdJ7j7JIL/t4+7+xco8nYDmNlwMxvR8Rn4FMFcS4Vre9x3EfSXFzCP4I6dPxCMGBx7TDlo093AFqCV4K+MLwFjCCbheit8H51Q/1th+9eScBcGUBv+Yv4BuJFwBIP++AI+StD9fgV4KXzNK4F2Hw+8GLZ7DfAvYXlRt7vbz6COA3dhFX27Ce4afTl8vdrxvVXItmsoExERyYpOYYmISFaUQEREJCtKICIikhUlEBERyYoSiIiIZEUJRCSHzKwtHBm145WzkZ3NbJIljKwsEjcNZSKSW3vcfUbcQYgUgnogIgUQztvw7xbM2fGcmX0oLD/CzB4zs1fC98PD8mozu9eC+T1eNrNTw12Vmdl/WTDnx8PhU+cisVACEcmtym6nsP4qYd1Od59F8KTvD8OyG4E73f144OfAj8LyHwFPuvsJBHO6vBqWTwFucvfjgB3AOXltjUgaehJdJIfMrMndq5KUbwQ+4e7rw8Ee/+TuY8ysERjv7q1h+RZ3P8TMtgET3H1vwj4mEQzTPiVc/meg3N3/rQBNE+lBPRCRwvEUn1PVSWZvwuc2dB1TYqQEIlI4f5Xw/tvw87MEo8gCnA88HX5+DPgKdE4UdVChghSJSn+9iORWZTgrYIeH3L3jVt6hZvZ7gj/czgvL/h64zcwWAduAi8LyfwAWm9mXCHoaXyEYWVmk39A1EJECCK+B1Lp7Y9yxiOSKTmGJiEhW1AMREZGsqAciIiJZUQIREZGsKIGIiEhWlEBERCQrSiAiIpKV/w/0WT6qsKa0wwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"epochs_saved = range(99, max_epochs, 100)\n",
|
|
"parameters = torch.empty((int(max_epochs/100), 2))\n",
|
|
"for i, epoch in enumerate(epochs_saved):\n",
|
|
" params_torch = torch.load('{}/parameters_epoch{}'.format(tmp_dir, epoch))\n",
|
|
" for e, var in enumerate(pinn.problem.unknown_variables): \n",
|
|
" parameters[i, e] = params_torch[var].data\n",
|
|
"\n",
|
|
"# Plot parameters\n",
|
|
"plt.close()\n",
|
|
"plt.plot(epochs_saved, parameters[:, 0], label='mu1', marker='o')\n",
|
|
"plt.plot(epochs_saved, parameters[:, 1], label='mu2', marker='s')\n",
|
|
"plt.ylim(-1, 1)\n",
|
|
"plt.grid()\n",
|
|
"plt.legend()\n",
|
|
"plt.xlabel('Epoch')\n",
|
|
"plt.ylabel('Parameter value')\n",
|
|
"plt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|