56 lines
2.4 KiB
Python
56 lines
2.4 KiB
Python
""" Parametric Poisson problem. """
|
|
|
|
|
|
# ===================================================== #
|
|
# #
|
|
# This script implements the two dimensional #
|
|
# Parametric Poisson problem. The ParametricPoisson #
|
|
# class is defined inheriting from SpatialProblem and #
|
|
# ParametricProblem. We denote: #
|
|
# u --> field variable #
|
|
# x,y --> spatial variables #
|
|
# mu1, mu2 --> parameter variables #
|
|
# #
|
|
# ===================================================== #
|
|
|
|
|
|
from pina.geometry import CartesianDomain
|
|
from pina.problem import SpatialProblem, ParametricProblem
|
|
from pina.operators import laplacian
|
|
from pina.equation import FixedValue, Equation
|
|
from pina import Condition
|
|
import torch
|
|
|
|
class ParametricPoisson(SpatialProblem, ParametricProblem):
|
|
|
|
# assign output/ spatial and parameter variables
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [-1, 1], 'y': [-1, 1]})
|
|
parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
|
|
|
# define the laplace equation
|
|
def laplace_equation(input_, output_):
|
|
force_term = torch.exp(
|
|
- 2*(input_.extract(['x']) - input_.extract(['mu1']))**2
|
|
- 2*(input_.extract(['y']) - input_.extract(['mu2']))**2)
|
|
return laplacian(output_.extract(['u']), input_, d=['x','y']) - force_term
|
|
|
|
# problem condition statement
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
location=CartesianDomain({'x': [-1, 1], 'y': 1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
|
equation=FixedValue(0.)),
|
|
'gamma2': Condition(
|
|
location=CartesianDomain({'x': [-1, 1], 'y': -1, 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
|
equation=FixedValue(0.)),
|
|
'gamma3': Condition(
|
|
location=CartesianDomain({'x': 1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
|
equation=FixedValue(0.)),
|
|
'gamma4': Condition(
|
|
location=CartesianDomain({'x': -1, 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
|
equation=FixedValue(0.)),
|
|
'D': Condition(
|
|
location=CartesianDomain({'x': [-1, 1], 'y': [-1, 1], 'mu1': [-1, 1], 'mu2': [-1, 1]}),
|
|
equation=Equation(laplace_equation)),
|
|
}
|