Files
PINA/examples/run_stokes.py
Dario Coscia ee39b39805 Examples update for v0.1 (#206)
* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

53 lines
1.6 KiB
Python

import argparse
from torch.nn import Softplus
from pina import Plotter, Trainer
from pina.model import FeedForward
from pina.solvers import PINN
from problems.stokes import Stokes
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
# create problem and discretise domain
stokes_problem = Stokes()
stokes_problem.discretise_domain(n=1000, locations=['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
stokes_problem.discretise_domain(n=2000, locations=['D'])
# make the model
model = FeedForward(
layers=[10, 10, 10, 10],
output_dimensions=len(stokes_problem.output_variables),
input_dimensions=len(stokes_problem.input_variables),
func=Softplus,
)
# make the pinn
pinn = PINN(
stokes_problem,
model,
optimizer_kwargs={'lr' : 0.001}
)
# create trainer
directory = 'pina.navier_stokes'
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=stokes_problem, model=model)
plotter = Plotter()
plotter.plot(pinn, components='ux')
plotter.plot(pinn, components='uy')
plotter.plot(pinn, components='p')
else:
trainer.train()