Files
PINA/docs/source/_rst/tutorial3/tutorial.rst
Dario Coscia a9b1bd2826 Tutorials v0.1 (#178)
Tutorial update and small fixes

* Tutorials update + Tutorial FNO
* Create a metric tracker callback
* Update PINN for logging
* Update plotter for plotting
* Small fix LabelTensor
* Small fix FNO

---------

Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-13-250.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-176.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

191 lines
7.1 KiB
ReStructuredText

Tutorial 3: resolution of wave equation with hard constraint PINNs.
===================================================================
The problem solution
~~~~~~~~~~~~~~~~~~~~
In this tutorial we present how to solve the wave equation using hard
constraint PINNs. For doing so we will build a costum torch model and
pass it to the ``PINN`` solver.
The problem is written in the following form:
:raw-latex:`\begin{equation}
\begin{cases}
\Delta u(x,y,t) = \frac{\partial^2}{\partial t^2} u(x,y,t) \quad \text{in } D, \\\\
u(x, y, t=0) = \sin(\pi x)\sin(\pi y), \\\\
u(x, y, t) = 0 \quad \text{on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4,
\end{cases}
\end{equation}`
where :math:`D` is a square domain :math:`[0,1]^2`, and
:math:`\Gamma_i`, with :math:`i=1,...,4`, are the boundaries of the
square, and the velocity in the standard wave equation is fixed to one.
First of all, some useful imports.
.. code:: ipython3
import torch
from pina.problem import SpatialProblem, TimeDependentProblem
from pina.operators import laplacian, grad
from pina.geometry import CartesianDomain
from pina.solvers import PINN
from pina.trainer import Trainer
from pina.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina import Condition, Plotter
Now, the wave problem is written in PINA code as a class, inheriting
from ``SpatialProblem`` and ``TimeDependentProblem`` since we deal with
spatial, and time dependent variables. The equations are written as
``conditions`` that should be satisfied in the corresponding domains.
``truth_solution`` is the exact solution which will be compared with the
predicted one.
.. code:: ipython3
class Wave(TimeDependentProblem, SpatialProblem):
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
temporal_domain = CartesianDomain({'t': [0, 1]})
def wave_equation(input_, output_):
u_t = grad(output_, input_, components=['u'], d=['t'])
u_tt = grad(u_t, input_, components=['dudt'], d=['t'])
nabla_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
return nabla_u - u_tt
def initial_condition(input_, output_):
u_expected = (torch.sin(torch.pi*input_.extract(['x'])) *
torch.sin(torch.pi*input_.extract(['y'])))
return output_.extract(['u']) - u_expected
conditions = {
'gamma1': Condition(location=CartesianDomain({'x': [0, 1], 'y': 1, 't': [0, 1]}), equation=FixedValue(0.)),
'gamma2': Condition(location=CartesianDomain({'x': [0, 1], 'y': 0, 't': [0, 1]}), equation=FixedValue(0.)),
'gamma3': Condition(location=CartesianDomain({'x': 1, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),
'gamma4': Condition(location=CartesianDomain({'x': 0, 'y': [0, 1], 't': [0, 1]}), equation=FixedValue(0.)),
't0': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': 0}), equation=Equation(initial_condition)),
'D': Condition(location=CartesianDomain({'x': [0, 1], 'y': [0, 1], 't': [0, 1]}), equation=Equation(wave_equation)),
}
def wave_sol(self, pts):
return (torch.sin(torch.pi*pts.extract(['x'])) *
torch.sin(torch.pi*pts.extract(['y'])) *
torch.cos(torch.sqrt(torch.tensor(2.))*torch.pi*pts.extract(['t'])))
truth_solution = wave_sol
problem = Wave()
After the problem, a **torch** model is needed to solve the PINN.
Usually many models are already implemented in ``PINA``, but the user
has the possibility to build his/her own model in ``pyTorch``. The hard
constraint we impose are on the boundary of the spatial domain.
Specificly our solution is written as:
.. math:: u_{\rm{pinn}} = xy(1-x)(1-y)\cdot NN(x, y, t),
where :math:`NN` is the neural net output. This neural network takes as
input the coordinates (in this case :math:`x`, :math:`y` and :math:`t`)
and provides the unkwown field of the Wave problem. By construction it
is zero on the boundaries. The residual of the equations are evaluated
at several sampling points (which the user can manipulate using the
method ``discretise_domain``) and the loss minimized by the neural
network is the sum of the residuals.
.. code:: ipython3
class HardMLP(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.layers = torch.nn.Sequential(torch.nn.Linear(input_dim, 20),
torch.nn.Tanh(),
torch.nn.Linear(20, 20),
torch.nn.Tanh(),
torch.nn.Linear(20, output_dim))
# here in the foward we implement the hard constraints
def forward(self, x):
hard = x.extract(['x'])*(1-x.extract(['x']))*x.extract(['y'])*(1-x.extract(['y']))
return hard*self.layers(x)
In this tutorial, the neural network is trained for 3000 epochs with a
learning rate of 0.001 (default in ``PINN``). Training takes
approximately 1 minute.
.. code:: ipython3
pinn = PINN(problem, HardMLP(len(problem.input_variables), len(problem.output_variables)))
problem.discretise_domain(1000, 'random', locations=['D','t0', 'gamma1', 'gamma2', 'gamma3', 'gamma4'])
trainer = Trainer(pinn, max_epochs=3000)
trainer.train()
.. parsed-literal::
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
| Name | Type | Params
----------------------------------------
0 | _loss | MSELoss | 0
1 | _neural_net | Network | 521
----------------------------------------
521 Trainable params
0 Non-trainable params
521 Total params
0.002 Total estimated model params size (MB)
.. parsed-literal::
Epoch 2999: : 1it [00:00, 79.33it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=3000` reached.
.. parsed-literal::
Epoch 2999: : 1it [00:00, 68.62it/s, v_num=5, mean_loss=0.00119, D_loss=0.00542, t0_loss=0.0017, gamma1_loss=0.000, gamma2_loss=0.000, gamma3_loss=0.000, gamma4_loss=0.000]
Notice that the loss on the boundaries of the spatial domain is exactly
zero, as expected! After the training is completed one can now plot some
results using the ``Plotter`` class of **PINA**.
.. code:: ipython3
plotter = Plotter()
# plotting at fixed time t = 0.0
plotter.plot(trainer, fixed_variables={'t': 0.0})
# plotting at fixed time t = 0.5
plotter.plot(trainer, fixed_variables={'t': 0.5})
# plotting at fixed time t = 1.
plotter.plot(trainer, fixed_variables={'t': 1.0})
.. image:: tutorial_files/tutorial_12_0.png
.. image:: tutorial_files/tutorial_12_1.png
.. image:: tutorial_files/tutorial_12_2.png