Files
PINA/pina/solvers/garom.py
Dario Coscia 80b4b43460 GAROM loggers (#181)
* adding loggers for GAROM solver

---------

Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
2023-11-17 09:51:29 +01:00

267 lines
10 KiB
Python

""" Module for PINN """
import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
from .solver import SolverInterface
from ..utils import check_consistency
from ..loss import LossInterface, LpLoss
from torch.nn.modules.loss import _Loss
class GAROM(SolverInterface):
"""
GAROM solver class. This class implements Generative Adversarial
Reduced Order Model solver, using user specified ``models`` to solve
a specific order reduction``problem``.
.. seealso::
**Original reference**: Coscia, D., Demo, N., & Rozza, G. (2023).
Generative Adversarial Reduced Order Modelling.
arXiv preprint arXiv:2305.15881.
<https://doi.org/10.48550/arXiv.2305.15881>`_.
"""
def __init__(self,
problem,
generator,
discriminator,
extra_features=None,
loss = None,
optimizer_generator=torch.optim.Adam,
optimizer_generator_kwargs={'lr' : 0.001},
optimizer_discriminator=torch.optim.Adam,
optimizer_discriminator_kwargs={'lr' : 0.001},
scheduler_generator=ConstantLR,
scheduler_generator_kwargs={"factor": 1, "total_iters": 0},
scheduler_discriminator=ConstantLR,
scheduler_discriminator_kwargs={"factor": 1, "total_iters": 0},
gamma = 0.3,
lambda_k = 0.001,
regularizer = False,
):
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module generator: The neural network model to use
for the generator.
:param torch.nn.Module discriminator: The neural network model to use
for the discriminator.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input. It should either be a
list of torch.nn.Module, or a dictionary. If a list it is
passed the extra features are passed to both network. If a
dictionary is passed, the keys must be ``generator`` and
``discriminator`` and the values a list of torch.nn.Module
extra features for each.
:param torch.nn.Module loss: The loss function used as minimizer,
default ``None``. If ``loss`` is ``None`` the defualt
``LpLoss(p=1)`` is used, as in the original paper.
:param torch.optim.Optimizer optimizer_generator: The neural
network optimizer to use for the generator network
, default is `torch.optim.Adam`.
:param dict optimizer_generator_kwargs: Optimizer constructor keyword
args. for the generator.
:param torch.optim.Optimizer optimizer_discriminator: The neural
network optimizer to use for the discriminator network
, default is `torch.optim.Adam`.
:param dict optimizer_discriminator_kwargs: Optimizer constructor keyword
args. for the discriminator.
:param torch.optim.LRScheduler scheduler_generator: Learning
rate scheduler for the generator.
:param dict scheduler_generator_kwargs: LR scheduler constructor keyword args.
:param torch.optim.LRScheduler scheduler_discriminator: Learning
rate scheduler for the discriminator.
:param dict scheduler_discriminator_kwargs: LR scheduler constructor keyword args.
:param gamma: Ratio of expected loss for generator and discriminator, defaults to 0.3.
:type gamma: float, optional
:param lambda_k: Learning rate for control theory optimization, defaults to 0.001.
:type lambda_k: float, optional
:param regularizer: Regularization term in the GAROM loss, defaults to False.
:type regularizer: bool, optional
.. warning::
The algorithm works only for data-driven model. Hence in the ``problem`` definition
the codition must only contain ``input_points`` (e.g. coefficient parameters, time
parameters), and ``output_points``.
"""
if isinstance(extra_features, dict):
extra_features = [extra_features['generator'], extra_features['discriminator']]
super().__init__(models=[generator, discriminator],
problem=problem,
extra_features=extra_features,
optimizers=[optimizer_generator, optimizer_discriminator],
optimizers_kwargs=[optimizer_generator_kwargs, optimizer_discriminator_kwargs])
# set automatic optimization for GANs
self.automatic_optimization = False
# set loss
if loss is None:
loss = LpLoss(p=1)
# check consistency
check_consistency(scheduler_generator, LRScheduler, subclass=True)
check_consistency(scheduler_generator_kwargs, dict)
check_consistency(scheduler_discriminator, LRScheduler, subclass=True)
check_consistency(scheduler_discriminator_kwargs, dict)
check_consistency(loss, (LossInterface, _Loss))
check_consistency(gamma, float)
check_consistency(lambda_k, float)
check_consistency(regularizer, bool)
# assign schedulers
self._schedulers = [scheduler_generator(self.optimizers[0],
**scheduler_generator_kwargs),
scheduler_discriminator(self.optimizers[1],
**scheduler_discriminator_kwargs)]
# loss and writer
self._loss = loss
# began hyperparameters
self.k = 0
self.gamma = gamma
self.lambda_k = lambda_k
self.regularizer = float(regularizer)
def forward(self, x, mc_steps=20, variance=False):
# sampling
field_sample = [self.sample(x) for _ in range(mc_steps)]
field_sample = torch.stack(field_sample)
# extract mean
mean = field_sample.mean(dim=0)
if variance:
var = field_sample.var(dim=0)
return mean, var
return mean
def configure_optimizers(self):
"""Optimizer configuration for the GAROM
solver.
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
"""
return self.optimizers, self._schedulers
def sample(self, x):
# sampling
return self.generator(x)
def training_step(self, batch, batch_idx):
"""PINN solver training step.
:param batch: The batch element in the dataloader.
:type batch: tuple
:param batch_idx: The batch index.
:type batch_idx: int
:return: The sum of the loss functions.
:rtype: LabelTensor
"""
for condition_name, samples in batch.items():
if condition_name not in self.problem.conditions:
raise RuntimeError('Something wrong happened.')
condition = self.problem.conditions[condition_name]
# for data driven mode
if hasattr(condition, 'output_points'):
# get data
parameters, input_pts = samples
# get optimizers
opt_gen, opt_disc = self.optimizers
# ---------------------
# Train Discriminator
# ---------------------
opt_disc.zero_grad()
# Generate a batch of images
gen_imgs = self.generator(parameters)
# Discriminator pass
d_real = self.discriminator([input_pts, parameters])
d_fake = self.discriminator([gen_imgs.detach(), parameters])
# evaluate loss
d_loss_real = self._loss(d_real, input_pts)
d_loss_fake = self._loss(d_fake, gen_imgs.detach())
d_loss = d_loss_real - self.k * d_loss_fake
# backward step
d_loss.backward()
opt_disc.step()
# -----------------
# Train Generator
# -----------------
opt_gen.zero_grad()
# Generate a batch of images
gen_imgs = self.generator(parameters)
# generator loss
r_loss = self._loss(input_pts, gen_imgs)
d_fake = self.discriminator([gen_imgs, parameters])
g_loss = self._loss(d_fake, gen_imgs) + self.regularizer * r_loss
# backward step
g_loss.backward()
opt_gen.step()
# ----------------
# Update weights
# ----------------
diff = torch.mean(self.gamma * d_loss_real - d_loss_fake)
# Update weight term for fake samples
self.k += self.lambda_k * diff.item()
self.k = min(max(self.k, 0), 1) # Constraint to interval [0, 1]
# logging
self.log('mean_loss', float(r_loss), prog_bar=True, logger=True)
self.log('d_loss', float(d_loss), prog_bar=True, logger=True)
self.log('g_loss', float(g_loss), prog_bar=True, logger=True)
self.log('stability_metric', float(d_loss_real + torch.abs(diff)), prog_bar=True, logger=True)
else:
raise NotImplementedError('GAROM works only in data-driven mode.')
return
@property
def generator(self):
return self.models[0]
@property
def discriminator(self):
return self.models[1]
@property
def optimizer_generator(self):
return self.optimizers[0]
@property
def optimizer_discriminator(self):
return self.optimizers[1]
@property
def scheduler_generator(self):
return self._schedulers[0]
@property
def scheduler_discriminator(self):
return self._schedulers[1]