Files
PINA/pina/dataset.py
SpartaKushK 625a77c0d5 Codacy Small Bug Fixes:
- cleaned up imports
- cleaned up some code
- added docstrings
2023-11-17 09:51:29 +01:00

79 lines
2.2 KiB
Python

from torch.utils.data import Dataset, DataLoader
import functools
class PinaDataset():
def __init__(self, pinn) -> None:
self.pinn = pinn
@property
def dataloader(self):
return self._create_dataloader()
@property
def dataset(self):
return [self.SampleDataset(key, val)
for key, val in self.input_pts.items()]
def _create_dataloader(self):
"""Private method for creating dataloader
:return: dataloader
:rtype: torch.utils.data.DataLoader
"""
if self.pinn.batch_size is None:
return {key: [{key: val}] for key, val in self.pinn.input_pts.items()}
def custom_collate(batch):
# extracting pts labels
_, pts = list(batch[0].items())[0]
labels = pts.labels
# calling default torch collate
collate_res = default_collate(batch)
# save collate result in dict
res = {}
for key, val in collate_res.items():
val.labels = labels
res[key] = val
def __getitem__(self, index):
tensor = self._tensor.select(0, index)
return {self._location: tensor}
def __len__(self):
return self._len
# TODO: working also for datapoints
class DummyLoader:
def __init__(self, data, device) -> None:
# TODO: We need to make a dataset somehow
# and the PINADataset needs to have a method
# to send points to device
# now we simply do it here
# send data to device
def convert_tensors(pts, device):
pts = pts.to(device)
pts.requires_grad_(True)
pts.retain_grad()
return pts
for location, pts in data.items():
if isinstance(pts, (tuple, list)):
pts = tuple(map(functools.partial(convert_tensors, device=device),pts))
else:
pts = pts.to(device)
pts = pts.requires_grad_(True)
pts.retain_grad()
data[location] = pts
# iterator
self.data = [data]
def __iter__(self):
return iter(self.data)