322 lines
12 KiB
Python
322 lines
12 KiB
Python
import logging
|
|
from lightning.pytorch import LightningDataModule
|
|
import math
|
|
import torch
|
|
from ..label_tensor import LabelTensor
|
|
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
|
|
RandomSampler
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from .dataset import PinaDatasetFactory
|
|
from ..collector import Collector
|
|
|
|
class DummyDataloader:
|
|
def __init__(self, dataset, device):
|
|
self.dataset = dataset.get_all_data()
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def __next__(self):
|
|
return self.dataset
|
|
|
|
|
|
class Collator:
|
|
def __init__(self, max_conditions_lengths, dataset=None):
|
|
self.max_conditions_lengths = max_conditions_lengths
|
|
self.callable_function = self._collate_custom_dataloader if \
|
|
max_conditions_lengths is None else (
|
|
self._collate_standard_dataloader)
|
|
self.dataset = dataset
|
|
|
|
def _collate_custom_dataloader(self, batch):
|
|
return self.dataset.fetch_from_idx_list(batch)
|
|
|
|
def _collate_standard_dataloader(self, batch):
|
|
"""
|
|
Function used to collate the batch
|
|
"""
|
|
batch_dict = {}
|
|
if isinstance(batch, dict):
|
|
return batch
|
|
conditions_names = batch[0].keys()
|
|
|
|
# Condition names
|
|
for condition_name in conditions_names:
|
|
single_cond_dict = {}
|
|
condition_args = batch[0][condition_name].keys()
|
|
for arg in condition_args:
|
|
data_list = [batch[idx][condition_name][arg] for idx in range(
|
|
min(len(batch),
|
|
self.max_conditions_lengths[condition_name]))]
|
|
if isinstance(data_list[0], LabelTensor):
|
|
single_cond_dict[arg] = LabelTensor.stack(data_list)
|
|
elif isinstance(data_list[0], torch.Tensor):
|
|
single_cond_dict[arg] = torch.stack(data_list)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Data type {type(data_list[0])} not supported")
|
|
batch_dict[condition_name] = single_cond_dict
|
|
return batch_dict
|
|
|
|
|
|
def __call__(self, batch):
|
|
return self.callable_function(batch)
|
|
|
|
|
|
class PinaSampler:
|
|
def __new__(self, dataset, batch_size, shuffle, automatic_batching):
|
|
|
|
if (torch.distributed.is_available() and
|
|
torch.distributed.is_initialized()):
|
|
sampler = DistributedSampler(dataset, shuffle=shuffle)
|
|
else:
|
|
if shuffle:
|
|
sampler = RandomSampler(dataset)
|
|
else:
|
|
sampler = SequentialSampler(dataset)
|
|
return sampler
|
|
|
|
|
|
class PinaDataModule(LightningDataModule):
|
|
"""
|
|
This class extend LightningDataModule, allowing proper creation and
|
|
management of different types of Datasets defined in PINA
|
|
"""
|
|
|
|
def __init__(self,
|
|
problem,
|
|
train_size=.7,
|
|
test_size=.2,
|
|
val_size=.1,
|
|
predict_size=0.,
|
|
batch_size=None,
|
|
shuffle=True,
|
|
repeat=False,
|
|
automatic_batching=False
|
|
):
|
|
"""
|
|
Initialize the object, creating dataset based on input problem
|
|
:param train_size: number/percentage of elements in train split
|
|
:param test_size: number/percentage of elements in test split
|
|
:param val_size: number/percentage of elements in evaluation split
|
|
:param batch_size: batch size used for training
|
|
"""
|
|
logging.debug('Start initialization of Pina DataModule')
|
|
logging.info('Start initialization of Pina DataModule')
|
|
super().__init__()
|
|
self.automatic_batching = automatic_batching
|
|
self.batch_size = batch_size
|
|
self.shuffle = shuffle
|
|
self.repeat = repeat
|
|
|
|
# Begin Data splitting
|
|
splits_dict = {}
|
|
if train_size > 0:
|
|
splits_dict['train'] = train_size
|
|
self.train_dataset = None
|
|
else:
|
|
self.train_dataloader = super().train_dataloader
|
|
if test_size > 0:
|
|
splits_dict['test'] = test_size
|
|
self.test_dataset = None
|
|
else:
|
|
self.test_dataloader = super().test_dataloader
|
|
if val_size > 0:
|
|
splits_dict['val'] = val_size
|
|
self.val_dataset = None
|
|
else:
|
|
self.val_dataloader = super().val_dataloader
|
|
if predict_size > 0:
|
|
splits_dict['predict'] = predict_size
|
|
self.predict_dataset = None
|
|
else:
|
|
self.predict_dataloader = super().predict_dataloader
|
|
|
|
collector = Collector(problem)
|
|
collector.store_fixed_data()
|
|
collector.store_sample_domains()
|
|
self.collector_splits = self._create_splits(collector, splits_dict)
|
|
self.transfer_batch_to_device = self._transfer_batch_to_device
|
|
|
|
def setup(self, stage=None):
|
|
"""
|
|
Perform the splitting of the dataset
|
|
"""
|
|
logging.debug('Start setup of Pina DataModule obj')
|
|
if stage == 'fit' or stage is None:
|
|
self.train_dataset = PinaDatasetFactory(
|
|
self.collector_splits['train'],
|
|
max_conditions_lengths=self.find_max_conditions_lengths(
|
|
'train'), automatic_batching=self.automatic_batching)
|
|
if 'val' in self.collector_splits.keys():
|
|
self.val_dataset = PinaDatasetFactory(
|
|
self.collector_splits['val'],
|
|
max_conditions_lengths=self.find_max_conditions_lengths(
|
|
'val'), automatic_batching=self.automatic_batching
|
|
)
|
|
elif stage == 'test':
|
|
self.test_dataset = PinaDatasetFactory(
|
|
self.collector_splits['test'],
|
|
max_conditions_lengths=self.find_max_conditions_lengths(
|
|
'test'), automatic_batching=self.automatic_batching
|
|
)
|
|
elif stage == 'predict':
|
|
self.predict_dataset = PinaDatasetFactory(
|
|
self.collector_splits['predict'],
|
|
max_conditions_lengths=self.find_max_conditions_lengths(
|
|
'predict'), automatic_batching=self.automatic_batching
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"stage must be either 'fit' or 'test' or 'predict'."
|
|
)
|
|
|
|
@staticmethod
|
|
def _split_condition(condition_dict, splits_dict):
|
|
len_condition = len(condition_dict['input_points'])
|
|
|
|
lengths = [
|
|
int(math.floor(len_condition * length)) for length in
|
|
splits_dict.values()
|
|
]
|
|
|
|
remainder = len_condition - sum(lengths)
|
|
for i in range(remainder):
|
|
lengths[i % len(lengths)] += 1
|
|
splits_dict = {k: v for k, v in zip(splits_dict.keys(), lengths)
|
|
}
|
|
to_return_dict = {}
|
|
offset = 0
|
|
for stage, stage_len in splits_dict.items():
|
|
to_return_dict[stage] = {k: v[offset:offset + stage_len]
|
|
for k, v in condition_dict.items() if
|
|
k != 'equation'
|
|
# Equations are NEVER dataloaded
|
|
}
|
|
offset += stage_len
|
|
return to_return_dict
|
|
|
|
def _create_splits(self, collector, splits_dict):
|
|
"""
|
|
Create the dataset objects putting data
|
|
"""
|
|
|
|
# ----------- Auxiliary function ------------
|
|
def _apply_shuffle(condition_dict, len_data):
|
|
idx = torch.randperm(len_data)
|
|
for k, v in condition_dict.items():
|
|
if k == 'equation':
|
|
continue
|
|
if isinstance(v, list):
|
|
condition_dict[k] = [v[i] for i in idx]
|
|
elif isinstance(v, LabelTensor):
|
|
condition_dict[k] = LabelTensor(v.tensor[idx],
|
|
v.labels)
|
|
elif isinstance(v, torch.Tensor):
|
|
condition_dict[k] = v[idx]
|
|
else:
|
|
raise ValueError(f"Data type {type(v)} not supported")
|
|
|
|
# ----------- End auxiliary function ------------
|
|
|
|
logging.debug('Dataset creation in PinaDataModule obj')
|
|
split_names = list(splits_dict.keys())
|
|
dataset_dict = {name: {} for name in split_names}
|
|
for condition_name, condition_dict in collector.data_collections.items():
|
|
len_data = len(condition_dict['input_points'])
|
|
if self.shuffle:
|
|
_apply_shuffle(condition_dict, len_data)
|
|
for key, data in self._split_condition(condition_dict,
|
|
splits_dict).items():
|
|
dataset_dict[key].update({condition_name: data})
|
|
return dataset_dict
|
|
|
|
def find_max_conditions_lengths(self, split):
|
|
max_conditions_lengths = {}
|
|
for k, v in self.collector_splits[split].items():
|
|
if self.batch_size is None:
|
|
max_conditions_lengths[k] = len(v['input_points'])
|
|
elif self.repeat:
|
|
max_conditions_lengths[k] = self.batch_size
|
|
else:
|
|
max_conditions_lengths[k] = min(len(v['input_points']),
|
|
self.batch_size)
|
|
return max_conditions_lengths
|
|
|
|
def val_dataloader(self):
|
|
"""
|
|
Create the validation dataloader
|
|
"""
|
|
# Use custom batching (good if batch size is large)
|
|
if self.batch_size is not None:
|
|
sampler = PinaSampler(self.val_dataset, self.batch_size,
|
|
self.shuffle, self.automatic_batching)
|
|
if self.automatic_batching:
|
|
collate = Collator(self.find_max_conditions_lengths('val'))
|
|
else:
|
|
collate = Collator(None, self.val_dataset)
|
|
return DataLoader(self.val_dataset, self.batch_size,
|
|
collate_fn=collate, sampler=sampler)
|
|
dataloader = DummyDataloader(self.val_dataset,
|
|
self.trainer.strategy.root_device)
|
|
dataloader.dataset = self._transfer_batch_to_device(dataloader.dataset,
|
|
self.trainer.strategy.root_device,
|
|
0)
|
|
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
|
|
return dataloader
|
|
|
|
def train_dataloader(self):
|
|
"""
|
|
Create the training dataloader
|
|
"""
|
|
# Use custom batching (good if batch size is large)
|
|
if self.batch_size is not None:
|
|
sampler = PinaSampler(self.train_dataset, self.batch_size,
|
|
self.shuffle, self.automatic_batching)
|
|
if self.automatic_batching:
|
|
collate = Collator(self.find_max_conditions_lengths('train'))
|
|
|
|
else:
|
|
collate = Collator(None, self.train_dataset)
|
|
return DataLoader(self.train_dataset, self.batch_size,
|
|
collate_fn=collate, sampler=sampler)
|
|
dataloader = DummyDataloader(self.train_dataset,
|
|
self.trainer.strategy.root_device)
|
|
dataloader.dataset = self._transfer_batch_to_device(dataloader.dataset,
|
|
self.trainer.strategy.root_device,
|
|
0)
|
|
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
|
|
return dataloader
|
|
|
|
def test_dataloader(self):
|
|
"""
|
|
Create the testing dataloader
|
|
"""
|
|
raise NotImplementedError("Test dataloader not implemented")
|
|
|
|
def predict_dataloader(self):
|
|
"""
|
|
Create the prediction dataloader
|
|
"""
|
|
raise NotImplementedError("Predict dataloader not implemented")
|
|
|
|
def _transfer_batch_to_device_dummy(self, batch, device, dataloader_idx):
|
|
return batch
|
|
|
|
def _transfer_batch_to_device(self, batch, device, dataloader_idx):
|
|
"""
|
|
Transfer the batch to the device. This method is called in the
|
|
training loop and is used to transfer the batch to the device.
|
|
"""
|
|
batch = [
|
|
(k, super(LightningDataModule, self).transfer_batch_to_device(v,
|
|
device,
|
|
dataloader_idx))
|
|
for k, v in batch.items()
|
|
]
|
|
|
|
return batch
|