72 lines
2.3 KiB
Python
72 lines
2.3 KiB
Python
"""Module to perform integration for continuous convolution."""
|
|
|
|
import torch
|
|
|
|
|
|
class Integral:
|
|
"""
|
|
Class allowing integration for continous convolution.
|
|
"""
|
|
|
|
def __init__(self, param):
|
|
"""
|
|
Initializzation of the :class:`Integral` class.
|
|
|
|
:param param: The type of continuous convolution.
|
|
:type param: string
|
|
:raises TypeError: If the parameter is neither ``discrete``
|
|
nor ``continuous``.
|
|
"""
|
|
if param == "discrete":
|
|
self.make_integral = self.integral_param_disc
|
|
elif param == "continuous":
|
|
self.make_integral = self.integral_param_cont
|
|
else:
|
|
raise TypeError
|
|
|
|
def __call__(self, *args, **kwds):
|
|
"""
|
|
Call the integral function
|
|
|
|
:param list args: Arguments for the integral function.
|
|
:param dict kwds: Keyword arguments for the integral function.
|
|
:return: The integral of the input.
|
|
:rtype: torch.tensor
|
|
"""
|
|
return self.make_integral(*args, **kwds)
|
|
|
|
def _prepend_zero(self, x):
|
|
"""
|
|
Create bins to perform integration.
|
|
|
|
:param torch.Tensor x: The input tensor.
|
|
:return: The bins for the integral.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
return torch.cat((torch.zeros(1, dtype=x.dtype, device=x.device), x))
|
|
|
|
def integral_param_disc(self, x, y, idx):
|
|
"""
|
|
Perform discrete integration with discrete parameters.
|
|
|
|
:param torch.Tensor x: The first input tensor.
|
|
:param torch.Tensor y: The second input tensor.
|
|
:param list[int] idx: The indices for different strides.
|
|
:return: The discrete integral.
|
|
:rtype: torch.Tensor
|
|
"""
|
|
cs_idxes = self._prepend_zero(torch.cumsum(torch.tensor(idx), 0))
|
|
cs = self._prepend_zero(torch.cumsum(x.flatten() * y.flatten(), 0))
|
|
return cs[cs_idxes[1:]] - cs[cs_idxes[:-1]]
|
|
|
|
def integral_param_cont(self, x, y, idx):
|
|
"""
|
|
Perform continuous integration with continuous parameters.
|
|
|
|
:param torch.Tensor x: The first input tensor.
|
|
:param torch.Tensor y: The second input tensor.
|
|
:param list[int] idx: The indices for different strides.
|
|
:raises NotImplementedError: The method is not implemented.
|
|
"""
|
|
raise NotImplementedError
|