104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from pina.problem import SpatialProblem
|
|
from pina.operators import laplacian
|
|
from pina import LabelTensor, Condition
|
|
from pina.geometry import CartesianDomain
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
|
torch.sin(input_.extract(['y'])*torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
|
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3': Condition(
|
|
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4': Condition(
|
|
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'D': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
|
equation=my_laplace),
|
|
'data': Condition(
|
|
input_points=in_,
|
|
output_points=out_)
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(
|
|
torch.sin(pts.extract(['x'])*torch.pi) *
|
|
torch.sin(pts.extract(['y'])*torch.pi)
|
|
)/(2*torch.pi**2)
|
|
|
|
truth_solution = poisson_sol
|
|
|
|
|
|
# make the problem
|
|
poisson_problem = Poisson()
|
|
|
|
|
|
def test_discretise_domain():
|
|
n = 10
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
for b in boundaries:
|
|
assert poisson_problem.input_pts[b].shape[0] == n
|
|
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
|
for b in boundaries:
|
|
assert poisson_problem.input_pts[b].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n**2
|
|
poisson_problem.discretise_domain(n, 'random', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'latin', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
poisson_problem.discretise_domain(n, 'lh', locations=['D'])
|
|
assert poisson_problem.input_pts['D'].shape[0] == n
|
|
|
|
def test_sampling_few_variables():
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=['D'], variables=['x'])
|
|
assert poisson_problem.input_pts['D'].shape[1] == 1
|
|
assert poisson_problem._have_sampled_points['D'] is False
|
|
|
|
# def test_sampling_all_args():
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
|
|
|
# def test_sampling_all_kwargs():
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n=n, mode='latin', locations=['D'])
|
|
|
|
# def test_sampling_dict():
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(
|
|
# {'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
|
|
|
|
# def test_sampling_mixed_args_kwargs():
|
|
# n = 10
|
|
# with pytest.raises(ValueError):
|
|
# poisson_problem.discretise_domain(n, mode='latin', locations=['D'])
|