Files
PINA/pina/problem/abstract_problem.py
Dario Coscia 63fd068988 Lightining update (#104)
* multiple functions for version 0.0
* lightining update
* minor changes
* data pinn  loss added
---------

Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
Co-authored-by: Dario Coscia <dariocoscia@cli-10-110-3-125.WIFIeduroamSTUD.units.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.station>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
Co-authored-by: Dario Coscia <dariocoscia@192.168.1.38>
2023-11-17 09:51:29 +01:00

185 lines
6.0 KiB
Python

""" Module for AbstractProblem class """
from abc import ABCMeta, abstractmethod
from ..utils import merge_tensors
class AbstractProblem(metaclass=ABCMeta):
"""
The abstract `AbstractProblem` class. All the class defining a PINA Problem
should be inheritied from this class.
In the definition of a PINA problem, the fundamental elements are:
the output variables, the condition(s), and the domain(s) where the
conditions are applied.
"""
def __init__(self):
# variable storing all points
self.input_pts = {}
# varible to check if sampling is done. If no location
# element is presented in Condition this variable is set to true
self._have_sampled_points = {}
# put in self.input_pts all the points that we don't need to sample
self._span_condition_points()
@property
def input_variables(self):
"""
The input variables of the AbstractProblem, whose type depends on the
type of domain (spatial, temporal, and parameter).
:return: the input variables of self
:rtype: list
"""
variables = []
if hasattr(self, 'spatial_variables'):
variables += self.spatial_variables
if hasattr(self, 'temporal_variable'):
variables += self.temporal_variable
if hasattr(self, 'parameters'):
variables += self.parameters
if hasattr(self, 'custom_variables'):
variables += self.custom_variables
return variables
@property
def domain(self):
"""
The domain(s) where the conditions of the AbstractProblem are valid.
:return: the domain(s) of self
:rtype: list (if more than one domain are defined),
`Span` domain (of only one domain is defined)
"""
domains = [
getattr(self, f'{t}_domain')
for t in ['spatial', 'temporal', 'parameter']
if hasattr(self, f'{t}_domain')
]
if len(domains) == 1:
return domains[0]
elif len(domains) == 0:
raise RuntimeError
if len(set(map(type, domains))) == 1:
domain = domains[0].__class__({})
[domain.update(d) for d in domains]
return domain
else:
raise RuntimeError('different domains')
@input_variables.setter
def input_variables(self, variables):
raise RuntimeError
@property
@abstractmethod
def output_variables(self):
"""
The output variables of the problem.
"""
pass
@property
@abstractmethod
def conditions(self):
"""
The conditions of the problem.
"""
pass
def _span_condition_points(self):
"""
Simple function to get the condition points
"""
for condition_name in self.conditions:
condition = self.conditions[condition_name]
if hasattr(condition, 'equation') and hasattr(condition, 'input_points'):
samples = condition.input_points
elif hasattr(condition, 'output_points') and hasattr(condition, 'input_points'):
samples = (condition.input_points, condition.output_points)
# skip if we need to sample
elif hasattr(condition, 'location'):
self._have_sampled_points[condition_name] = False
continue
self.input_pts[condition_name] = samples
def discretise_domain(self, *args, **kwargs):
"""
Generate a set of points to span the `Location` of all the conditions of
the problem.
>>> pinn.span_pts(n=10, mode='grid')
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
"""
if all(key in kwargs for key in ['n', 'mode']):
argument = {}
argument['n'] = kwargs['n']
argument['mode'] = kwargs['mode']
argument['variables'] = self.input_variables
arguments = [argument]
elif any(key in kwargs for key in ['n', 'mode']) and args:
raise ValueError("Don't mix args and kwargs")
elif isinstance(args[0], int) and isinstance(args[1], str):
argument = {}
argument['n'] = int(args[0])
argument['mode'] = args[1]
argument['variables'] = self.input_variables
arguments = [argument]
elif all(isinstance(arg, dict) for arg in args):
arguments = args
else:
raise RuntimeError
locations = kwargs.get('locations', 'all')
if locations == 'all':
locations = [condition for condition in self.conditions]
for location in locations:
condition = self.conditions[location]
samples = tuple(condition.location.sample(
argument['n'],
argument['mode'],
variables=argument['variables'])
for argument in arguments)
pts = merge_tensors(samples)
self.input_pts[location] = pts
# setting the grad
self.input_pts[location].requires_grad_(True)
self.input_pts[location].retain_grad()
# the condition is sampled
self._have_sampled_points[location] = True
@property
def have_sampled_points(self):
"""
Check if all points for
``'Location'`` are sampled.
"""
return all(self._have_sampled_points.values())
@property
def not_sampled_points(self):
"""Check which points are
not sampled.
"""
# variables which are not sampled
not_sampled = None
if self.have_sampled_points is False:
# check which one are not sampled:
not_sampled = []
for condition_name, is_sample in self._have_sampled_points.items():
if not is_sample:
not_sampled.append(condition_name)
return not_sampled