Files
PINA/pina/trainer.py
Dario Coscia 92e0e4920b CPU/GPU/TPU training (#159)
* device training

---------

Co-authored-by: Dario Coscia <dcoscia@lovelace.maths.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
2023-11-17 09:51:29 +01:00

35 lines
1.2 KiB
Python

""" Solver module. """
import lightning.pytorch as pl
from .utils import check_consistency
from .dataset import DummyLoader
from .solvers.solver import SolverInterface
class Trainer(pl.Trainer):
def __init__(self, solver, kwargs={}):
super().__init__(**kwargs)
# get accellerator
device = self._accelerator_connector._accelerator_flag
# check inheritance consistency for solver
check_consistency(solver, SolverInterface)
self._model = solver
# create dataloader
if solver.problem.have_sampled_points is False:
raise RuntimeError(f'Input points in {solver.problem.not_sampled_points} '
'training are None. Please '
'sample points in your problem by calling '
'discretise_domain function before train '
'in the provided locations.')
# TODO: make a better dataloader for train
self._loader = DummyLoader(solver.problem.input_pts, device)
def train(self): # TODO add kwargs and lightining capabilities
return super().fit(self._model, self._loader)