Files
PINA/pina/label_tensor.py
Dario Coscia 8b7b61b3bd Documentation for v0.1 version (#199)
* Adding Equations, solving typos
* improve _code.rst
* the team rst and restuctore index.rst
* fixing errors

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

294 lines
9.4 KiB
Python

""" Module for LabelTensor """
from typing import Any
import torch
from torch import Tensor
class LabelTensor(torch.Tensor):
"""Torch tensor with a label for any column."""
@staticmethod
def __new__(cls, x, labels, *args, **kwargs):
return super().__new__(cls, x, *args, **kwargs)
def __init__(self, x, labels):
'''
Construct a `LabelTensor` by passing a tensor and a list of column
labels. Such labels uniquely identify the columns of the tensor,
allowing for an easier manipulation.
:param torch.Tensor x: The data tensor.
:param labels: The labels of the columns.
:type labels: str | list(str) | tuple(str)
:Example:
>>> from pina import LabelTensor
>>> tensor = LabelTensor(torch.rand((2000, 3)), ['a', 'b', 'c'])
>>> tensor
tensor([[6.7116e-02, 4.8892e-01, 8.9452e-01],
[9.2392e-01, 8.2065e-01, 4.1986e-04],
[8.9266e-01, 5.5446e-01, 6.3500e-01],
...,
[5.8194e-01, 9.4268e-01, 4.1841e-01],
[1.0246e-01, 9.5179e-01, 3.7043e-02],
[9.6150e-01, 8.0656e-01, 8.3824e-01]])
>>> tensor.extract('a')
tensor([[0.0671],
[0.9239],
[0.8927],
...,
[0.5819],
[0.1025],
[0.9615]])
>>> tensor['a']
tensor([[0.0671],
[0.9239],
[0.8927],
...,
[0.5819],
[0.1025],
[0.9615]])
>>> tensor.extract(['a', 'b'])
tensor([[0.0671, 0.4889],
[0.9239, 0.8207],
[0.8927, 0.5545],
...,
[0.5819, 0.9427],
[0.1025, 0.9518],
[0.9615, 0.8066]])
>>> tensor.extract(['b', 'a'])
tensor([[0.4889, 0.0671],
[0.8207, 0.9239],
[0.5545, 0.8927],
...,
[0.9427, 0.5819],
[0.9518, 0.1025],
[0.8066, 0.9615]])
'''
if x.ndim == 1:
x = x.reshape(-1, 1)
if isinstance(labels, str):
labels = [labels]
if len(labels) != x.shape[-1]:
raise ValueError('the tensor has not the same number of columns of '
'the passed labels.')
self._labels = labels
@property
def labels(self):
"""Property decorator for labels
:return: labels of self
:rtype: list
"""
return self._labels
@labels.setter
def labels(self, labels):
if len(labels) != self.shape[self.ndim - 1]: # small check
raise ValueError('The tensor has not the same number of columns of '
'the passed labels.')
self._labels = labels # assign the label
@staticmethod
def vstack(label_tensors):
"""
Stack tensors vertically. For more details, see
:meth:`torch.vstack`.
:param list(LabelTensor) label_tensors: the tensors to stack. They need
to have equal labels.
:return: the stacked tensor
:rtype: LabelTensor
"""
if len(label_tensors) == 0:
return []
all_labels = [label for lt in label_tensors for label in lt.labels]
if set(all_labels) != set(label_tensors[0].labels):
raise RuntimeError('The tensors to stack have different labels')
labels = label_tensors[0].labels
tensors = [lt.extract(labels) for lt in label_tensors]
return LabelTensor(torch.vstack(tensors), labels)
def clone(self, *args, **kwargs):
"""
Clone the LabelTensor. For more details, see
:meth:`torch.Tensor.clone`.
:return: A copy of the tensor.
:rtype: LabelTensor
"""
# # used before merging
# try:
# out = LabelTensor(super().clone(*args, **kwargs), self.labels)
# except:
# out = super().clone(*args, **kwargs)
out = LabelTensor(super().clone(*args, **kwargs), self.labels)
return out
def to(self, *args, **kwargs):
"""
Performs Tensor dtype and/or device conversion. For more details, see
:meth:`torch.Tensor.to`.
"""
tmp = super().to(*args, **kwargs)
new = self.__class__.clone(self)
new.data = tmp.data
return new
def select(self, *args, **kwargs):
"""
Performs Tensor selection. For more details, see :meth:`torch.Tensor.select`.
"""
tmp = super().select(*args, **kwargs)
tmp._labels = self._labels
return tmp
def cuda(self, *args, **kwargs):
"""
Send Tensor to cuda. For more details, see :meth:`torch.Tensor.cuda`.
"""
tmp = super().cuda(*args, **kwargs)
new = self.__class__.clone(self)
new.data = tmp.data
return tmp
def cpu(self, *args, **kwargs):
"""
Send Tensor to cpu. For more details, see :meth:`torch.Tensor.cpu`.
"""
tmp = super().cpu(*args, **kwargs)
new = self.__class__.clone(self)
new.data = tmp.data
return tmp
def extract(self, label_to_extract):
"""
Extract the subset of the original tensor by returning all the columns
corresponding to the passed ``label_to_extract``.
:param label_to_extract: The label(s) to extract.
:type label_to_extract: str | list(str) | tuple(str)
:raises TypeError: Labels are not ``str``.
:raises ValueError: Label to extract is not in the labels ``list``.
"""
if isinstance(label_to_extract, str):
label_to_extract = [label_to_extract]
elif isinstance(label_to_extract, (tuple, list)): # TODO
pass
else:
raise TypeError(
'`label_to_extract` should be a str, or a str iterator')
indeces = []
for f in label_to_extract:
try:
indeces.append(self.labels.index(f))
except ValueError:
raise ValueError(f'`{f}` not in the labels list')
new_data = super(Tensor, self.T).__getitem__(indeces).T
new_labels = [self.labels[idx] for idx in indeces]
extracted_tensor = new_data.as_subclass(LabelTensor)
extracted_tensor.labels = new_labels
return extracted_tensor
def detach(self):
detached = super().detach()
if hasattr(self, '_labels'):
detached._labels = self._labels
return detached
def requires_grad_(self, mode = True):
lt = super().requires_grad_(mode)
lt.labels = self.labels
return lt
def append(self, lt, mode='std'):
"""
Return a copy of the merged tensors.
:param LabelTensor lt: The tensor to merge.
:param str mode: {'std', 'first', 'cross'}
:return: The merged tensors.
:rtype: LabelTensor
"""
if set(self.labels).intersection(lt.labels):
raise RuntimeError('The tensors to merge have common labels')
new_labels = self.labels + lt.labels
if mode == 'std':
new_tensor = torch.cat((self, lt), dim=1)
elif mode == 'first':
raise NotImplementedError
elif mode == 'cross':
tensor1 = self
tensor2 = lt
n1 = tensor1.shape[0]
n2 = tensor2.shape[0]
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0),
labels=tensor2.labels)
new_tensor = torch.cat((tensor1, tensor2), dim=1)
new_tensor = new_tensor.as_subclass(LabelTensor)
new_tensor.labels = new_labels
return new_tensor
def __getitem__(self, index):
"""
Return a copy of the selected tensor.
"""
if isinstance(index, str) or (isinstance(index, (tuple, list))and all(isinstance(a, str) for a in index)):
return self.extract(index)
selected_lt = super(Tensor, self).__getitem__(index)
try:
len_index = len(index)
except TypeError:
len_index = 1
if isinstance(index, int) or len_index == 1:
if selected_lt.ndim == 1:
selected_lt = selected_lt.reshape(1, -1)
if hasattr(self, 'labels'):
selected_lt.labels = self.labels
elif len_index == 2:
if selected_lt.ndim == 1:
selected_lt = selected_lt.reshape(-1, 1)
if hasattr(self, 'labels'):
if isinstance(index[1], list):
selected_lt.labels = [self.labels[i] for i in index[1]]
else:
selected_lt.labels = self.labels[index[1]]
else:
selected_lt.labels = self.labels
return selected_lt
@property
def tensor(self):
return self.as_subclass(Tensor)
def __len__(self) -> int:
return super().__len__()
def __str__(self):
if hasattr(self, 'labels'):
s = f'labels({str(self.labels)})\n'
else:
s = 'no labels\n'
s += super().__str__()
return s