247 lines
8.9 KiB
Plaintext
Vendored
247 lines
8.9 KiB
Plaintext
Vendored
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Tutorial: The `Equation` Class\n",
|
|
"\n",
|
|
"[](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial12/tutorial.ipynb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this tutorial, we will show how to use the `Equation` Class in PINA. Specifically, we will see how use the Class and its inherited classes to enforce residuals minimization in PINNs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Example: The Burgers 1D equation"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We will start implementing the viscous Burgers 1D problem Class, described as follows:\n",
|
|
"\n",
|
|
"\n",
|
|
"$$\n",
|
|
"\\begin{equation}\n",
|
|
"\\begin{cases}\n",
|
|
"\\frac{\\partial u}{\\partial t} + u \\frac{\\partial u}{\\partial x} &= \\nu \\frac{\\partial^2 u}{ \\partial x^2}, \\quad x\\in(0,1), \\quad t>0\\\\\n",
|
|
"u(x,0) &= -\\sin (\\pi x)\\\\\n",
|
|
"u(x,t) &= 0 \\quad x = \\pm 1\\\\\n",
|
|
"\\end{cases}\n",
|
|
"\\end{equation}\n",
|
|
"$$\n",
|
|
"\n",
|
|
"where we set $ \\nu = \\frac{0.01}{\\pi}$.\n",
|
|
"\n",
|
|
"In the class that models this problem we will see in action the `Equation` class and one of its inherited classes, the `FixedValue` class. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"## routine needed to run the notebook on Google Colab\n",
|
|
"try:\n",
|
|
" import google.colab\n",
|
|
" IN_COLAB = True\n",
|
|
"except:\n",
|
|
" IN_COLAB = False\n",
|
|
"if IN_COLAB:\n",
|
|
" !pip install \"pina-mathlab\"\n",
|
|
"\n",
|
|
"import torch\n",
|
|
"\n",
|
|
"#useful imports\n",
|
|
"from pina.problem import SpatialProblem, TimeDependentProblem\n",
|
|
"from pina.equation import Equation, FixedValue\n",
|
|
"from pina.domain import CartesianDomain\n",
|
|
"from pina.operator import grad, laplacian\n",
|
|
"from pina import Condition"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Burgers1D(TimeDependentProblem, SpatialProblem):\n",
|
|
"\n",
|
|
" # define the burger equation\n",
|
|
" def burger_equation(input_, output_):\n",
|
|
" du = grad(output_, input_)\n",
|
|
" ddu = grad(du, input_, components=['dudx'])\n",
|
|
" return (\n",
|
|
" du.extract(['dudt']) +\n",
|
|
" output_.extract(['u'])*du.extract(['dudx']) -\n",
|
|
" (0.01/torch.pi)*ddu.extract(['ddudxdx'])\n",
|
|
" )\n",
|
|
"\n",
|
|
" # define initial condition\n",
|
|
" def initial_condition(input_, output_):\n",
|
|
" u_expected = -torch.sin(torch.pi*input_.extract(['x']))\n",
|
|
" return output_.extract(['u']) - u_expected\n",
|
|
"\n",
|
|
" # assign output/ spatial and temporal variables\n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianDomain({'x': [-1, 1]})\n",
|
|
" temporal_domain = CartesianDomain({'t': [0, 1]})\n",
|
|
"\n",
|
|
" # problem condition statement\n",
|
|
" conditions = {\n",
|
|
" 'bound_cond1': Condition(domain=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
|
" 'bound_cond2': Condition(domain=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
|
" 'time_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),\n",
|
|
" 'phys_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Equation(burger_equation)),\n",
|
|
" }"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n",
|
|
"The `Equation` class takes as input a function (in this case it happens twice, with `initial_condition` and `burger_equation`) which computes a residual of an equation, such as a PDE. In a problem class such as the one above, the `Equation` class with such a given input is passed as a parameter in the specified `Condition`. \n",
|
|
"\n",
|
|
"The `FixedValue` class takes as input a value of same dimensions of the output functions; this class can be used to enforce a fixed value for a specific condition, e.g. Dirichlet boundary conditions, as it happens for instance in our example.\n",
|
|
"\n",
|
|
"Once the equations are set as above in the problem conditions, the PINN solver will aim to minimize the residuals described in each equation in the training phase. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Available classes of equations include also:\n",
|
|
"- `FixedGradient` and `FixedFlux`: they work analogously to `FixedValue` class, where we can require a constant value to be enforced, respectively, on the gradient of the solution or the divergence of the solution;\n",
|
|
"- `Laplace`: it can be used to enforce the laplacian of the solution to be zero;\n",
|
|
"- `SystemEquation`: we can enforce multiple conditions on the same subdomain through this class, passing a list of residual equations defined in the problem.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Defining a new Equation class"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"`Equation` classes can be also inherited to define a new class. As example, we can see how to rewrite the above problem introducing a new class `Burgers1D`; during the class call, we can pass the viscosity parameter $\\nu$:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Burgers1DEquation(Equation):\n",
|
|
" \n",
|
|
" def __init__(self, nu = 0.):\n",
|
|
" \"\"\"\n",
|
|
" Burgers1D class. This class can be\n",
|
|
" used to enforce the solution u to solve the viscous Burgers 1D Equation.\n",
|
|
" \n",
|
|
" :param torch.float32 nu: the viscosity coefficient. Default value is set to 0.\n",
|
|
" \"\"\"\n",
|
|
" self.nu = nu \n",
|
|
" \n",
|
|
" def equation(input_, output_):\n",
|
|
" return grad(output_, input_, d='t') +\\\n",
|
|
" output_*grad(output_, input_, d='x') -\\\n",
|
|
" self.nu*laplacian(output_, input_, d='x')\n",
|
|
"\n",
|
|
" \n",
|
|
" super().__init__(equation)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we can just pass the above class as input for the last condition, setting $\\nu= \\frac{0.01}{\\pi}$:"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class Burgers1D(TimeDependentProblem, SpatialProblem):\n",
|
|
"\n",
|
|
" # define initial condition\n",
|
|
" def initial_condition(input_, output_):\n",
|
|
" u_expected = -torch.sin(torch.pi*input_.extract(['x']))\n",
|
|
" return output_.extract(['u']) - u_expected\n",
|
|
"\n",
|
|
" # assign output/ spatial and temporal variables\n",
|
|
" output_variables = ['u']\n",
|
|
" spatial_domain = CartesianDomain({'x': [-1, 1]})\n",
|
|
" temporal_domain = CartesianDomain({'t': [0, 1]})\n",
|
|
"\n",
|
|
" # problem condition statement\n",
|
|
" conditions = {\n",
|
|
" 'bound_cond1': Condition(domain=CartesianDomain({'x': -1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
|
" 'bound_cond2': Condition(domain=CartesianDomain({'x': 1, 't': [0, 1]}), equation=FixedValue(0.)),\n",
|
|
" 'time_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': 0}), equation=Equation(initial_condition)),\n",
|
|
" 'phys_cond': Condition(domain=CartesianDomain({'x': [-1, 1], 't': [0, 1]}), equation=Burgers1DEquation(0.01/torch.pi)),\n",
|
|
" }"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# What's next?"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Congratulations on completing the `Equation` class tutorial of **PINA**! As we have seen, you can build new classes that inherit `Equation` to store more complex equations, as the Burgers 1D equation, only requiring to pass the characteristic coefficients of the problem. \n",
|
|
"From now on, you can:\n",
|
|
"- define additional complex equation classes (e.g. `SchrodingerEquation`, `NavierStokeEquation`..)\n",
|
|
"- define more `FixedOperator` (e.g. `FixedCurl`)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.3"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|