Files
PINA/pina/data/dataset.py
2025-11-12 14:32:56 +01:00

198 lines
6.6 KiB
Python

"""Module for the PINA dataset classes."""
from torch.utils.data import Dataset
from torch_geometric.data import Data
from ..graph import Graph, LabelBatch
from ..label_tensor import LabelTensor
import torch
class PinaDatasetFactory:
"""
Factory class for the PINA dataset.
Depending on the data type inside the conditions, it instanciate an object
belonging to the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
"""
def __new__(cls, conditions_dict, **kwargs):
"""
Instantiate the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`.
If a graph is present in the conditions, returns a
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
:class:`~pina.data.dataset.PinaTensorDataset`.
:param dict conditions_dict: Dictionary containing all the conditions
to be included in the dataset instance.
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
:rtype: PinaTensorDataset | PinaGraphDataset
:raises ValueError: If an empty dictionary is provided.
"""
# Check if conditions_dict is empty
if len(conditions_dict) == 0:
raise ValueError("No conditions provided")
dataset_dict = {}
# Check is a Graph is present in the conditions
for name, data in conditions_dict.items():
if not isinstance(data, dict):
raise ValueError(
f"Condition '{name}' data must be a dictionary"
)
# is_graph = cls._is_graph_dataset(conditions_dict)
# if is_graph:
# raise NotImplementedError("PinaGraphDataset is not implemented yet.")
dataset_dict[name] = PinaTensorDataset(data, **kwargs)
return dataset_dict
@staticmethod
def _is_graph_dataset(cond_data):
"""
TODO: Docstring
"""
# Iterate over the values of the current condition
for cond in cond_data.values():
if isinstance(cond, (Data, Graph, list, tuple)):
return True
return False
class PinaTensorDataset(Dataset):
"""
Dataset class for the PINA dataset with :class:`torch.Tensor` and
:class:`~pina.label_tensor.LabelTensor` data.
"""
def __init__(self, data_dict, automatic_batching=None):
"""
Initialize the instance by storing the conditions dictionary.
:param dict conditions_dict: A dictionary mapping condition names to
their respective data. Each key represents a condition name, and the
corresponding value is a dictionary containing the associated data.
"""
# Store the conditions dictionary
self.data = data_dict
self.automatic_batching = (
automatic_batching if automatic_batching is not None else True
)
self.stack_fn = (
{}
) # LabelTensor.stack if any(isinstance(v, LabelTensor) for v in data_dict.values()) else torch.stack
for k, v in data_dict.items():
if isinstance(v, LabelTensor):
self.stack_fn[k] = LabelTensor.stack
elif isinstance(v, torch.Tensor):
self.stack_fn[k] = torch.stack
elif isinstance(v, list) and all(
isinstance(item, (Data, Graph)) for item in v
):
self.stack_fn[k] = LabelBatch.from_data_list
else:
raise ValueError(
f"Unsupported data type for stacking: {type(v)}"
)
def __len__(self):
return len(next(iter(self.data.values())))
def __getitem__(self, idx):
"""
Return the data at the given index in the dataset.
:param int idx: Index.
:return: A dictionary containing the data at the given index.
:rtype: dict
"""
if self.automatic_batching:
# Return the data at the given index
return {
field_name: data[idx] for field_name, data in self.data.items()
}
return idx
def _getitem_from_list(self, idx_list):
"""
Return data from the dataset given a list of indices.
:param list[int] idx_list: List of indices.
:return: A dictionary containing the data at the given indices.
:rtype: dict
"""
to_return = {}
for field_name, data in self.data.items():
if self.stack_fn[field_name] == LabelBatch.from_data_list:
to_return[field_name] = self.stack_fn[field_name](
[data[i] for i in idx_list]
)
else:
to_return[field_name] = data[idx_list]
return to_return
class PinaGraphDataset(Dataset):
def __init__(self, data_dict, automatic_batching=None):
"""
Initialize the instance by storing the conditions dictionary.
:param dict conditions_dict: A dictionary mapping condition names to
their respective data. Each key represents a condition name, and the
corresponding value is a dictionary containing the associated data.
"""
# Store the conditions dictionary
self.data = data_dict
self.automatic_batching = (
automatic_batching if automatic_batching is not None else True
)
def __len__(self):
return len(next(iter(self.data.values())))
def __getitem__(self, idx):
"""
Return the data at the given index in the dataset.
:param int idx: Index.
:return: A dictionary containing the data at the given index.
:rtype: dict
"""
if self.automatic_batching:
# Return the data at the given index
return {
field_name: data[idx] for field_name, data in self.data.items()
}
return idx
def _getitem_from_list(self, idx_list):
"""
Return data from the dataset given a list of indices.
:param list[int] idx_list: List of indices.
:return: A dictionary containing the data at the given indices.
:rtype: dict
"""
return {
field_name: [data[i] for i in idx_list]
for field_name, data in self.data.items()
}