* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
81 lines
3.4 KiB
Python
81 lines
3.4 KiB
Python
'''PINA Callbacks Implementations'''
|
|
|
|
from pytorch_lightning.callbacks import Callback
|
|
import torch
|
|
from ..utils import check_consistency
|
|
|
|
|
|
class SwitchOptimizer(Callback):
|
|
|
|
def __init__(self, new_optimizers, new_optimizers_kwargs, epoch_switch):
|
|
"""
|
|
PINA Implementation of a Lightning Callback to switch optimizer during training.
|
|
|
|
This callback allows for switching between different optimizers during training, enabling
|
|
the exploration of multiple optimization strategies without the need to stop training.
|
|
|
|
:param new_optimizers: The model optimizers to switch to. Can be a single
|
|
:class:`torch.optim.Optimizer` or a list of them for multiple model solvers.
|
|
:type new_optimizers: torch.optim.Optimizer | list
|
|
:param new_optimizers_kwargs: The keyword arguments for the new optimizers. Can be a single dictionary
|
|
or a list of dictionaries corresponding to each optimizer.
|
|
:type new_optimizers_kwargs: dict | list
|
|
:param epoch_switch: The epoch at which to switch to the new optimizer.
|
|
:type epoch_switch: int
|
|
|
|
:raises ValueError: If `epoch_switch` is less than 1 or if there is a mismatch in the number of
|
|
optimizers and their corresponding keyword argument dictionaries.
|
|
|
|
Example:
|
|
>>> switch_callback = SwitchOptimizer(new_optimizers=[optimizer1, optimizer2],
|
|
>>> new_optimizers_kwargs=[{'lr': 0.001}, {'lr': 0.01}],
|
|
>>> epoch_switch=10)
|
|
"""
|
|
super().__init__()
|
|
|
|
# check type consistency
|
|
check_consistency(new_optimizers, torch.optim.Optimizer, subclass=True)
|
|
check_consistency(new_optimizers_kwargs, dict)
|
|
check_consistency(epoch_switch, int)
|
|
|
|
if epoch_switch < 1:
|
|
raise ValueError('epoch_switch must be greater than one.')
|
|
|
|
if not isinstance(new_optimizers, list):
|
|
new_optimizers = [new_optimizers]
|
|
new_optimizers_kwargs = [new_optimizers_kwargs]
|
|
len_optimizer = len(new_optimizers)
|
|
len_optimizer_kwargs = len(new_optimizers_kwargs)
|
|
|
|
if len_optimizer_kwargs != len_optimizer:
|
|
raise ValueError('You must define one dictionary of keyword'
|
|
' arguments for each optimizers.'
|
|
f' Got {len_optimizer} optimizers, and'
|
|
f' {len_optimizer_kwargs} dicitionaries')
|
|
|
|
# save new optimizers
|
|
self._new_optimizers = new_optimizers
|
|
self._new_optimizers_kwargs = new_optimizers_kwargs
|
|
self._epoch_switch = epoch_switch
|
|
|
|
def on_train_epoch_start(self, trainer, __):
|
|
"""
|
|
Callback function to switch optimizer at the start of each training epoch.
|
|
|
|
:param trainer: The trainer object managing the training process.
|
|
:type trainer: pytorch_lightning.Trainer
|
|
:param _: Placeholder argument (not used).
|
|
|
|
:return: None
|
|
:rtype: None
|
|
"""
|
|
if trainer.current_epoch == self._epoch_switch:
|
|
optims = []
|
|
for idx, (optim, optim_kwargs) in enumerate(
|
|
zip(self._new_optimizers, self._new_optimizers_kwargs)):
|
|
optims.append(
|
|
optim(trainer._model.models[idx].parameters(),
|
|
**optim_kwargs))
|
|
|
|
trainer.optimizers = optims
|