Files
PINA/pina/dataset.py
Nicola Demo d654259428 add dataset and dataloader for sample points (#195)
* add dataset and dataloader for sample points
* unittests
2023-11-17 09:51:29 +01:00

240 lines
8.6 KiB
Python

from torch.utils.data import Dataset
import torch
from pina import LabelTensor
class SamplePointDataset(Dataset):
"""
This class is used to create a dataset of sample points.
"""
def __init__(self, problem, device) -> None:
"""
:param dict input_pts: The input points.
"""
super().__init__()
pts_list = []
self.condition_names = []
for name, condition in problem.conditions.items():
if not hasattr(condition, 'output_points'):
pts_list.append(problem.input_pts[name])
self.condition_names.append(name)
self.pts = LabelTensor.vstack(pts_list)
if self.pts != []:
self.condition_indeces = torch.cat([
torch.tensor([i]*len(pts_list[i]))
for i in range(len(self.condition_names))
], dim=0)
else: # if there are no sample points
self.condition_indeces = torch.tensor([])
self.pts = torch.tensor([])
self.pts = self.pts.to(device)
self.condition_indeces = self.condition_indeces.to(device)
def __len__(self):
return self.pts.shape[0]
class DataPointDataset(Dataset):
def __init__(self, problem, device) -> None:
super().__init__()
input_list = []
output_list = []
self.condition_names = []
for name, condition in problem.conditions.items():
if hasattr(condition, 'output_points'):
input_list.append(problem.conditions[name].input_points)
output_list.append(problem.conditions[name].output_points)
self.condition_names.append(name)
self.input_pts = LabelTensor.vstack(input_list)
self.output_pts = LabelTensor.vstack(output_list)
if self.input_pts != []:
self.condition_indeces = torch.cat([
torch.tensor([i]*len(input_list[i]))
for i in range(len(self.condition_names))
], dim=0)
else: # if there are no data points
self.condition_indeces = torch.tensor([])
self.input_pts = torch.tensor([])
self.output_pts = torch.tensor([])
self.input_pts = self.input_pts.to(device)
self.output_pts = self.output_pts.to(device)
self.condition_indeces = self.condition_indeces.to(device)
def __len__(self):
return self.input_pts.shape[0]
class SamplePointLoader:
"""
This class is used to create a dataloader to use during the training.
:var condition_names: The names of the conditions. The order is consistent
with the condition indeces in the batches.
:vartype condition_names: list[str]
"""
def __init__(self, sample_dataset, data_dataset, batch_size=None, shuffle=True) -> None:
"""
Constructor.
:param SamplePointDataset sample_pts: The sample points dataset.
:param int batch_size: The batch size. If ``None``, the batch size is
set to the number of sample points. Default is ``None``.
:param bool shuffle: If ``True``, the sample points are shuffled.
Default is ``True``.
"""
if not isinstance(sample_dataset, SamplePointDataset):
raise TypeError(f'Expected SamplePointDataset, got {type(sample_dataset)}')
if not isinstance(data_dataset, DataPointDataset):
raise TypeError(f'Expected DataPointDataset, got {type(data_dataset)}')
self.n_data_conditions = len(data_dataset.condition_names)
self.n_phys_conditions = len(sample_dataset.condition_names)
data_dataset.condition_indeces += self.n_phys_conditions
self._prepare_sample_dataset(sample_dataset, batch_size, shuffle)
self._prepare_data_dataset(data_dataset, batch_size, shuffle)
self.condition_names = (
sample_dataset.condition_names + data_dataset.condition_names)
self.batch_list = []
for i in range(len(self.batch_sample_pts)):
self.batch_list.append(
('sample', i)
)
for i in range(len(self.batch_input_pts)):
self.batch_list.append(
('data', i)
)
if shuffle:
self.random_idx = torch.randperm(len(self.batch_list))
else:
self.random_idx = torch.arange(len(self.batch_list))
def _prepare_data_dataset(self, dataset, batch_size, shuffle):
"""
Prepare the dataset for data points.
:param SamplePointDataset dataset: The dataset.
:param int batch_size: The batch size.
:param bool shuffle: If ``True``, the sample points are shuffled.
"""
self.sample_dataset = dataset
if len(dataset) == 0:
self.batch_data_conditions = []
self.batch_input_pts = []
self.batch_output_pts = []
return
if batch_size is None:
batch_size = len(dataset)
batch_num = len(dataset) // batch_size
if len(dataset) % batch_size != 0:
batch_num += 1
output_labels = dataset.output_pts.labels
input_labels = dataset.input_pts.labels
self.tensor_conditions = dataset.condition_indeces
if shuffle:
idx = torch.randperm(dataset.input_pts.shape[0])
self.input_pts = dataset.input_pts[idx]
self.output_pts = dataset.output_pts[idx]
self.tensor_conditions = dataset.condition_indeces[idx]
self.batch_input_pts = torch.tensor_split(
dataset.input_pts, batch_num)
self.batch_output_pts = torch.tensor_split(
dataset.output_pts, batch_num)
for i in range(len(self.batch_input_pts)):
self.batch_input_pts[i].labels = input_labels
self.batch_output_pts[i].labels = output_labels
self.batch_data_conditions = torch.tensor_split(
self.tensor_conditions, batch_num)
def _prepare_sample_dataset(self, dataset, batch_size, shuffle):
"""
Prepare the dataset for sample points.
:param DataPointDataset dataset: The dataset.
:param int batch_size: The batch size.
:param bool shuffle: If ``True``, the sample points are shuffled.
"""
self.sample_dataset = dataset
if len(dataset) == 0:
self.batch_sample_conditions = []
self.batch_sample_pts = []
return
if batch_size is None:
batch_size = len(dataset)
batch_num = len(dataset) // batch_size
if len(dataset) % batch_size != 0:
batch_num += 1
self.tensor_pts = dataset.pts
self.tensor_conditions = dataset.condition_indeces
# if shuffle:
# idx = torch.randperm(self.tensor_pts.shape[0])
# self.tensor_pts = self.tensor_pts[idx]
# self.tensor_conditions = self.tensor_conditions[idx]
self.batch_sample_pts = torch.tensor_split(self.tensor_pts, batch_num)
for i in range(len(self.batch_sample_pts)):
self.batch_sample_pts[i].labels = dataset.pts.labels
self.batch_sample_conditions = torch.tensor_split(
self.tensor_conditions, batch_num)
def __iter__(self):
"""
Return an iterator over the points. Any element of the iterator is a
dictionary with the following keys:
- ``pts``: The input sample points. It is a LabelTensor with the
shape ``(batch_size, input_dimension)``.
- ``output``: The output sample points. This key is present only
if data conditions are present. It is a LabelTensor with the
shape ``(batch_size, output_dimension)``.
- ``condition``: The integer condition indeces. It is a tensor
with the shape ``(batch_size, )`` of type ``torch.int64`` and
indicates for any ``pts`` the corresponding problem condition.
:return: An iterator over the points.
:rtype: iter
"""
#for i in self.random_idx:
for i in range(len(self.batch_list)):
type_, idx_ = self.batch_list[i]
if type_ == 'sample':
d = {
'pts': self.batch_sample_pts[idx_].requires_grad_(True),
'condition': self.batch_sample_conditions[idx_],
}
else:
d = {
'pts': self.batch_input_pts[idx_].requires_grad_(True),
'output': self.batch_output_pts[idx_],
'condition': self.batch_data_conditions[idx_],
}
yield d