* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
51 lines
2.1 KiB
Python
51 lines
2.1 KiB
Python
""" Definition of the inverse Poisson problem on a square domain."""
|
|
|
|
import torch
|
|
from pina import Condition, LabelTensor
|
|
from pina.problem import SpatialProblem, InverseProblem
|
|
from pina.operators import laplacian
|
|
from pina.domain import CartesianDomain
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
|
|
def laplace_equation(input_, output_, params_):
|
|
"""
|
|
Implementation of the laplace equation.
|
|
"""
|
|
force_term = torch.exp(- 2*(input_.extract(['x']) - params_['mu1'])**2
|
|
- 2*(input_.extract(['y']) - params_['mu2'])**2)
|
|
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
|
return delta_u - force_term
|
|
|
|
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
|
"""
|
|
Implementation of the inverse 2-dimensional Poisson problem
|
|
on a square domain, with parameter domain [-1, 1] x [-1, 1].
|
|
"""
|
|
output_variables = ['u']
|
|
x_min, x_max = -2, 2
|
|
y_min, y_max = -2, 2
|
|
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
|
|
data_output = LabelTensor(torch.rand(10, 1), ['u'])
|
|
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
|
|
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
|
|
|
domains = {
|
|
'g1': CartesianDomain({'x': [x_min, x_max], 'y': y_max}),
|
|
'g2': CartesianDomain({'x': [x_min, x_max], 'y': y_min}),
|
|
'g3': CartesianDomain({'x': x_max, 'y': [y_min, y_max]}),
|
|
'g4': CartesianDomain({'x': x_min, 'y': [y_min, y_max]}),
|
|
'D': CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]}),
|
|
}
|
|
|
|
conditions = {
|
|
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
|
|
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
|
|
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
|
|
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
|
|
'laplace_D': Condition(domain='D', equation=Equation(laplace_equation)),
|
|
'data': Condition(
|
|
input_points=data_input.extract(['x', 'y']),
|
|
output_points=data_output)
|
|
}
|