Files
PINA/tests/test_label_tensor.py
Nicola Demo 2b71e0148d in progress
2025-03-19 17:46:33 +01:00

192 lines
5.4 KiB
Python

import torch
import pytest
from pina.label_tensor import LabelTensor
#import pina
data = torch.rand((20, 3))
labels_column = {
1: {
"name": "space",
"dof": ['x', 'y', 'z']
}
}
labels_row = {
0: {
"name": "samples",
"dof": range(20)
}
}
labels_all = labels_column | labels_row
@pytest.mark.parametrize("labels", [labels_column, labels_row, labels_all])
def test_constructor(labels):
LabelTensor(data, labels)
def test_wrong_constructor():
with pytest.raises(ValueError):
LabelTensor(data, ['a', 'b'])
@pytest.mark.parametrize("labels", [labels_column, labels_all])
@pytest.mark.parametrize("labels_te", ['z', ['z'], {'space': ['z']}])
def test_extract_column(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 20
assert torch.all(torch.isclose(data[:, 2].reshape(-1, 1), new))
@pytest.mark.parametrize("labels", [labels_row, labels_all])
@pytest.mark.parametrize("labels_te", [2, [2], {'samples': [2]}])
def test_extract_row(labels, labels_te):
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 3
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2].reshape(1, -1), new))
@pytest.mark.parametrize("labels_te", [
{'samples': [2], 'space': ['z']},
{'space': 'z', 'samples': 2}
])
def test_extract_2D(labels_te):
labels = labels_all
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[1] == 1
assert new.shape[0] == 1
assert torch.all(torch.isclose(data[2,2].reshape(1, 1), new))
def test_extract_3D():
labels = labels_all
data = torch.rand((20, 3, 4))
labels = {
1: {
"name": "space",
"dof": ['x', 'y', 'z']
},
2: {
"name": "time",
"dof": range(4)
},
}
labels_te = {
'space': ['x', 'z'],
'time': range(1, 4)
}
tensor = LabelTensor(data, labels)
new = tensor.extract(labels_te)
assert new.ndim == tensor.ndim
assert new.shape[0] == 20
assert new.shape[1] == 2
assert new.shape[2] == 3
assert torch.all(torch.isclose(
data[:, 0::2, 1:4].reshape(20, 2, 3),
new
))
# def test_labels():
# tensor = LabelTensor(data, labels)
# assert isinstance(tensor, torch.Tensor)
# assert tensor.labels == labels
# with pytest.raises(ValueError):
# tensor.labels = labels[:-1]
# def test_extract():
# label_to_extract = ['a', 'c']
# tensor = LabelTensor(data, labels)
# new = tensor.extract(label_to_extract)
# assert new.labels == label_to_extract
# assert new.shape[1] == len(label_to_extract)
# assert torch.all(torch.isclose(data[:, 0::2], new))
# def test_extract_onelabel():
# label_to_extract = ['a']
# tensor = LabelTensor(data, labels)
# new = tensor.extract(label_to_extract)
# assert new.ndim == 2
# assert new.labels == label_to_extract
# assert new.shape[1] == len(label_to_extract)
# assert torch.all(torch.isclose(data[:, 0].reshape(-1, 1), new))
# def test_wrong_extract():
# label_to_extract = ['a', 'cc']
# tensor = LabelTensor(data, labels)
# with pytest.raises(ValueError):
# tensor.extract(label_to_extract)
# def test_extract_order():
# label_to_extract = ['c', 'a']
# tensor = LabelTensor(data, labels)
# new = tensor.extract(label_to_extract)
# expected = torch.cat(
# (data[:, 2].reshape(-1, 1), data[:, 0].reshape(-1, 1)),
# dim=1)
# assert new.labels == label_to_extract
# assert new.shape[1] == len(label_to_extract)
# assert torch.all(torch.isclose(expected, new))
# def test_merge():
# tensor = LabelTensor(data, labels)
# tensor_a = tensor.extract('a')
# tensor_b = tensor.extract('b')
# tensor_c = tensor.extract('c')
# tensor_bc = tensor_b.append(tensor_c)
# assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
# def test_merge2():
# tensor = LabelTensor(data, labels)
# tensor_b = tensor.extract('b')
# tensor_c = tensor.extract('c')
# tensor_bc = tensor_b.append(tensor_c)
# assert torch.allclose(tensor_bc, tensor.extract(['b', 'c']))
# def test_getitem():
# tensor = LabelTensor(data, labels)
# tensor_view = tensor['a']
# assert tensor_view.labels == ['a']
# assert torch.allclose(tensor_view.flatten(), data[:, 0])
# tensor_view = tensor['a', 'c']
# assert tensor_view.labels == ['a', 'c']
# assert torch.allclose(tensor_view, data[:, 0::2])
# def test_getitem2():
# tensor = LabelTensor(data, labels)
# tensor_view = tensor[:5]
# assert tensor_view.labels == labels
# assert torch.allclose(tensor_view, data[:5])
# idx = torch.randperm(tensor.shape[0])
# tensor_view = tensor[idx]
# assert tensor_view.labels == labels
# def test_slice():
# tensor = LabelTensor(data, labels)
# tensor_view = tensor[:5, :2]
# assert tensor_view.labels == labels[:2]
# assert torch.allclose(tensor_view, data[:5, :2])
# tensor_view2 = tensor[3]
# assert tensor_view2.labels == labels
# assert torch.allclose(tensor_view2, data[3])
# tensor_view3 = tensor[:, 2]
# assert tensor_view3.labels == labels[2]
# assert torch.allclose(tensor_view3, data[:, 2].reshape(-1, 1))