Files
PINA/examples/run_poisson_deeponet.py
Dario Coscia ee39b39805 Examples update for v0.1 (#206)
* modify examples/problems
* modify tutorials

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-235.eduroam.sissa.it>
Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
2023-11-17 09:51:29 +01:00

76 lines
2.5 KiB
Python

import argparse
import torch
from pina import Plotter, LabelTensor, Trainer
from pina.solvers import PINN
from pina.model import DeepONet, FeedForward
from problems.parametric_poisson import ParametricPoisson
class myFeature(torch.nn.Module):
"""
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (
torch.exp(
- 2*(x.extract(['x']) - x.extract(['mu1']))**2
- 2*(x.extract(['y']) - x.extract(['mu2']))**2
)
)
return LabelTensor(t, ['k0'])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run PINA")
parser.add_argument("--load", help="directory to save or load file", type=str)
parser.add_argument("--epochs", help="extra features", type=int, default=1000)
args = parser.parse_args()
# create problem and discretise domain
ppoisson_problem = ParametricPoisson()
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['x', 'y'], locations=['D'])
ppoisson_problem.discretise_domain(n=100, mode='random', variables = ['mu1', 'mu2'], locations=['D'])
ppoisson_problem.discretise_domain(n=20, mode='random', variables = ['x', 'y'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
ppoisson_problem.discretise_domain(n=5, mode='random', variables = ['mu1', 'mu2'], locations=['gamma1', 'gamma2', 'gamma3', 'gamma4'])
# create model
trunck = FeedForward(
layers=[40, 40],
output_dimensions=1,
input_dimensions=2,
func=torch.nn.ReLU
)
branch = FeedForward(
layers=[40, 40],
output_dimensions=1,
input_dimensions=2,
func=torch.nn.ReLU
)
model = DeepONet(branch_net=branch,
trunk_net=trunck,
input_indeces_branch_net=['x', 'y'],
input_indeces_trunk_net=['mu1', 'mu2'])
# create solver
pinn = PINN(
problem=ppoisson_problem,
model=model,
optimizer_kwargs={'lr' : 0.006}
)
# create trainer
directory = 'pina.parametric_poisson_deeponet'
trainer = Trainer(solver=pinn, accelerator='cpu', max_epochs=args.epochs, default_root_dir=directory)
if args.load:
pinn = PINN.load_from_checkpoint(checkpoint_path=args.load, problem=ppoisson_problem, model=model)
plotter = Plotter()
plotter.plot(pinn, fixed_variables={'mu1': 1, 'mu2': -1})
else:
trainer.train()