Files
PINA/tests/test_solver/test_causal_pinn.py
Filippo Olivo a0cbf1c44a Improve conditions and refactor dataset classes (#475)
* Reimplement conditions

* Refactor datasets and implement LabelBatch

---------

Co-authored-by: Dario Coscia <dariocos99@gmail.com>
2025-03-19 17:46:36 +01:00

157 lines
5.1 KiB
Python

import torch
import pytest
from pina import LabelTensor, Condition
from pina.problem import SpatialProblem
from pina.solver import CausalPINN
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.problem.zoo import (
DiffusionReactionProblem,
InverseDiffusionReactionProblem
)
from pina.condition import (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition
)
from torch._dynamo.eval_frame import OptimizedModule
class DummySpatialProblem(SpatialProblem):
'''
A mock spatial problem for testing purposes.
'''
output_variables = ['u']
conditions = {}
spatial_domain = None
# define problems and model
problem = DiffusionReactionProblem()
problem.discretise_domain(50)
inverse_problem = InverseDiffusionReactionProblem()
inverse_problem.discretise_domain(50)
model = FeedForward(
len(problem.input_variables),
len(problem.output_variables)
)
# add input-output condition to test supervised learning
input_pts = torch.rand(50, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(50, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions['data'] = Condition(
input=input_pts,
target=output_pts
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("eps", [100, 100.1])
def test_constructor(problem, eps):
with pytest.raises(ValueError):
CausalPINN(model=model, problem=DummySpatialProblem())
solver = CausalPINN(model=model, problem=problem, eps=eps)
assert solver.accepted_conditions_types == (
InputTargetCondition,
InputEquationCondition,
DomainEquationCondition
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, batch_size, compile):
solver = CausalPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=1.,
val_size=0.,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, batch_size, compile):
solver = CausalPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, batch_size, compile):
solver = CausalPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile)
trainer.test()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solver/tmp"
problem = problem
solver = CausalPINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
# loading
new_solver = CausalPINN.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=problem, model=model)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == (
solver.forward(test_pts).shape
)
torch.testing.assert_close(
new_solver.forward(test_pts),
solver.forward(test_pts))
# rm directories
import shutil
shutil.rmtree('tests/test_solver/tmp')