Files
PINA/tests/test_pinn.py
2022-11-28 12:48:44 +01:00

62 lines
1.9 KiB
Python

import torch
import pytest
from pina import LabelTensor, Condition, Span, PINN
from pina.problem import SpatialProblem
from pina.model import FeedForward
from pina.operators import nabla
class Poisson(SpatialProblem):
output_variables = ['u']
spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
def laplace_equation(input_, output_):
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
torch.sin(input_.extract(['y'])*torch.pi))
nabla_u = nabla(output_, input_, components=['u'], d=['x', 'y'])
return nabla_u - force_term
def nil_dirichlet(input_, output_):
value = 0.0
return output_.extract(['u']) - value
conditions = {
'gamma1': Condition(Span({'x': [0, 1], 'y': 1}), nil_dirichlet),
'gamma2': Condition(Span({'x': [0, 1], 'y': 0}), nil_dirichlet),
'gamma3': Condition(Span({'x': 1, 'y': [0, 1]}), nil_dirichlet),
'gamma4': Condition(Span({'x': 0, 'y': [0, 1]}), nil_dirichlet),
'D': Condition(Span({'x': [0, 1], 'y': [0, 1]}), laplace_equation),
}
def poisson_sol(self, pts):
return -(
torch.sin(pts.extract(['x'])*torch.pi)*
torch.sin(pts.extract(['y'])*torch.pi)
)/(2*torch.pi**2)
truth_solution = poisson_sol
problem = Poisson()
model = FeedForward(2, 1)
def test_constructor():
PINN(problem, model)
def test_span_pts():
pinn = PINN(problem, model)
n = 10
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
pinn.span_pts(n, 'grid', boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'random', boundaries)
for b in boundaries:
assert pinn.input_pts[b].shape[0] == n
pinn.span_pts(n, 'grid', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n**2
pinn.span_pts(n, 'random', locations=['D'])
assert pinn.input_pts['D'].shape[0] == n