Files
PINA/tests/test_operator.py
Giovanni Canali 6d39e2fa98 fix labels management in operators (#524)
* fix bug in laplace labels

* fix label management and add test
2025-04-17 10:48:32 +02:00

206 lines
7.2 KiB
Python

import torch
import pytest
from pina import LabelTensor
from pina.operator import grad, div, laplacian
def func_vector(x):
return x**2
def func_scalar(x):
x_ = x.extract(["x"])
y_ = x.extract(["y"])
z_ = x.extract(["z"])
return x_**2 + y_**2 + z_**2
data = torch.rand((20, 3))
inp = LabelTensor(data, ["x", "y", "z"]).requires_grad_(True)
labels = ["a", "b", "c"]
tensor_v = LabelTensor(func_vector(inp), labels)
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])
def test_grad_scalar_output():
grad_tensor_s = grad(tensor_s, inp)
true_val = 2 * inp
true_val.labels = inp.labels
assert grad_tensor_s.shape == inp.shape
assert grad_tensor_s.labels == [
f"d{tensor_s.labels[0]}d{i}" for i in inp.labels
]
assert torch.allclose(grad_tensor_s, true_val)
grad_tensor_s = grad(tensor_s, inp, d=["x", "y"])
assert grad_tensor_s.shape == (20, 2)
assert grad_tensor_s.labels == [
f"d{tensor_s.labels[0]}d{i}" for i in ["x", "y"]
]
assert torch.allclose(grad_tensor_s, true_val.extract(["x", "y"]))
def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp)
true_val = torch.cat(
(
2 * inp.extract(["x"]),
torch.zeros_like(inp.extract(["y"])),
torch.zeros_like(inp.extract(["z"])),
torch.zeros_like(inp.extract(["x"])),
2 * inp.extract(["y"]),
torch.zeros_like(inp.extract(["z"])),
torch.zeros_like(inp.extract(["x"])),
torch.zeros_like(inp.extract(["y"])),
2 * inp.extract(["z"]),
),
dim=1,
)
assert grad_tensor_v.shape == (20, 9)
assert grad_tensor_v.labels == [
f"d{j}d{i}" for j in tensor_v.labels for i in inp.labels
]
assert torch.allclose(grad_tensor_v, true_val)
grad_tensor_v = grad(tensor_v, inp, d=["x", "y"])
true_val = torch.cat(
(
2 * inp.extract(["x"]),
torch.zeros_like(inp.extract(["y"])),
torch.zeros_like(inp.extract(["x"])),
2 * inp.extract(["y"]),
torch.zeros_like(inp.extract(["x"])),
torch.zeros_like(inp.extract(["y"])),
),
dim=1,
)
assert grad_tensor_v.shape == (inp.shape[0], 6)
assert grad_tensor_v.labels == [
f"d{j}d{i}" for j in tensor_v.labels for i in ["x", "y"]
]
assert torch.allclose(grad_tensor_v, true_val)
def test_div_vector_output():
div_tensor_v = div(tensor_v, inp)
true_val = 2 * torch.sum(inp, dim=1).reshape(-1, 1)
assert div_tensor_v.shape == (20, 1)
assert div_tensor_v.labels == [f"dadx+dbdy+dcdz"]
assert torch.allclose(div_tensor_v, true_val)
div_tensor_v = div(tensor_v, inp, components=["a", "b"], d=["x", "y"])
true_val = 2 * torch.sum(inp.extract(["x", "y"]), dim=1).reshape(-1, 1)
assert div_tensor_v.shape == (inp.shape[0], 1)
assert div_tensor_v.labels == [f"dadx+dbdy"]
assert torch.allclose(div_tensor_v, true_val)
def test_laplacian_scalar_output():
laplace_tensor_s = laplacian(tensor_s, inp)
true_val = 6 * torch.ones_like(laplace_tensor_s)
assert laplace_tensor_s.shape == tensor_s.shape
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val)
laplace_tensor_s = laplacian(tensor_s, inp, components=["a"], d=["x", "y"])
true_val = 4 * torch.ones_like(laplace_tensor_s)
assert laplace_tensor_s.shape == tensor_s.shape
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val)
def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp)
print(laplace_tensor_v.labels)
print(tensor_v.labels)
true_val = 2 * torch.ones_like(tensor_v)
assert laplace_tensor_v.shape == tensor_v.shape
assert laplace_tensor_v.labels == [f"dd{i}" for i in tensor_v.labels]
assert torch.allclose(laplace_tensor_v, true_val)
laplace_tensor_v = laplacian(
tensor_v, inp, components=["a", "b"], d=["x", "y"]
)
true_val = 2 * torch.ones_like(tensor_v.extract(["a", "b"]))
assert laplace_tensor_v.shape == tensor_v.extract(["a", "b"]).shape
assert laplace_tensor_v.labels == [f"dd{i}" for i in ["a", "b"]]
assert torch.allclose(laplace_tensor_v, true_val)
def test_laplacian_vector_output2():
x = LabelTensor(
torch.linspace(0, 1, 10, requires_grad=True).reshape(-1, 1),
labels=["x"],
)
y = LabelTensor(
torch.linspace(3, 4, 10, requires_grad=True).reshape(-1, 1),
labels=["y"],
)
input_ = LabelTensor(torch.cat((x, y), dim=1), labels=["x", "y"])
# Construct two scalar functions:
# u = x**2 + y**2
# v = x**2 - y**2
u = LabelTensor(
input_.extract("x") ** 2 + input_.extract("y") ** 2, labels="u"
)
v = LabelTensor(
input_.extract("x") ** 2 - input_.extract("y") ** 2, labels="v"
)
# Define a vector-valued function, whose components are u and v.
f = LabelTensor(torch.cat((u, v), dim=1), labels=["u", "v"])
# Compute the scalar laplacian of both u and v:
# Lap(u) = [4, 4, 4, ..., 4]
# Lap(v) = [0, 0, 0, ..., 0]
lap_u = laplacian(u, input_, components=["u"])
lap_v = laplacian(v, input_, components=["v"])
# Compute the laplacian of f: the two columns should correspond
# to the laplacians of u and v, respectively...
lap_f = laplacian(f, input_, components=["u", "v"])
assert torch.allclose(lap_f.extract("ddu"), lap_u)
assert torch.allclose(lap_f.extract("ddv"), lap_v)
def test_label_format():
# Testing the format of `components` or `d` in case of single str of length
# greater than 1; e.g.: "aaa".
# This test is conducted only for gradient and laplacian, since div is not
# implemented for single components.
inp.labels = ["xx", "yy", "zz"]
tensor_v = LabelTensor(func_vector(inp), ["aa", "bbb", "c"])
comp = tensor_v.labels[0]
single_d = inp.labels[0]
# Single component as string + list of d
grad_tensor_v = grad(tensor_v, inp, components=comp, d=None)
assert grad_tensor_v.labels == [f"d{comp}d{i}" for i in inp.labels]
lap_tensor_v = laplacian(tensor_v, inp, components=comp, d=None)
assert lap_tensor_v.labels == [f"dd{comp}"]
# Single component as list + list of d
grad_tensor_v = grad(tensor_v, inp, components=[comp], d=None)
assert grad_tensor_v.labels == [f"d{comp}d{i}" for i in inp.labels]
lap_tensor_v = laplacian(tensor_v, inp, components=[comp], d=None)
assert lap_tensor_v.labels == [f"dd{comp}"]
# List of components + single d as string
grad_tensor_v = grad(tensor_v, inp, components=None, d=single_d)
assert grad_tensor_v.labels == [f"d{i}d{single_d}" for i in tensor_v.labels]
lap_tensor_v = laplacian(tensor_v, inp, components=None, d=single_d)
assert lap_tensor_v.labels == [f"dd{i}" for i in tensor_v.labels]
# List of components + single d as list
grad_tensor_v = grad(tensor_v, inp, components=None, d=[single_d])
assert grad_tensor_v.labels == [f"d{i}d{single_d}" for i in tensor_v.labels]
lap_tensor_v = laplacian(tensor_v, inp, components=None, d=[single_d])
assert lap_tensor_v.labels == [f"dd{i}" for i in tensor_v.labels]