* rm meta.py, plotter.py, writer.py * modify __init__ file * modify tests due to __init__ import
32 lines
1.3 KiB
Python
32 lines
1.3 KiB
Python
import torch
|
|
from pina.problem import AbstractProblem
|
|
from pina.condition import InputOutputPointsCondition
|
|
from pina.problem.zoo.supervised_problem import SupervisedProblem
|
|
from pina.graph import RadiusGraph
|
|
|
|
def test_constructor():
|
|
input_ = torch.rand((100,10))
|
|
output_ = torch.rand((100,10))
|
|
problem = SupervisedProblem(input_=input_, output_=output_)
|
|
assert isinstance(problem, AbstractProblem)
|
|
assert hasattr(problem, "conditions")
|
|
assert isinstance(problem.conditions, dict)
|
|
assert list(problem.conditions.keys()) == ['data']
|
|
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
|
|
|
def test_constructor_graph():
|
|
x = torch.rand((20,100,10))
|
|
pos = torch.rand((20,100,2))
|
|
input_ = RadiusGraph(
|
|
x=x, pos=pos, r=.2, build_edge_attr=True
|
|
)
|
|
output_ = torch.rand((100,10))
|
|
problem = SupervisedProblem(input_=input_, output_=output_)
|
|
assert isinstance(problem, AbstractProblem)
|
|
assert hasattr(problem, "conditions")
|
|
assert isinstance(problem.conditions, dict)
|
|
assert list(problem.conditions.keys()) == ['data']
|
|
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
|
assert isinstance(problem.conditions['data'].input_points, list)
|
|
assert isinstance(problem.conditions['data'].output_points, torch.Tensor)
|