105 lines
3.5 KiB
Python
105 lines
3.5 KiB
Python
import torch
|
|
from pina.label_tensor import LabelTensor
|
|
|
|
|
|
class Network(torch.nn.Module):
|
|
"""The PINA implementation of any neural network.
|
|
|
|
:param torch.nn.Module model: the torch model of the network.
|
|
:param list(str) input_variables: the list containing the labels
|
|
corresponding to the input components of the model.
|
|
:param list(str) output_variables: the list containing the labels
|
|
corresponding to the components of the output computed by the model.
|
|
:param torch.nn.Module extra_features: the additional input
|
|
features to use as augmented input.
|
|
|
|
:Example:
|
|
>>> class SimpleNet(nn.Module):
|
|
>>> def __init__(self):
|
|
>>> super().__init__()
|
|
>>> self.layers = nn.Sequential(
|
|
>>> nn.Linear(2, 20),
|
|
>>> nn.Tanh(),
|
|
>>> nn.Linear(20, 1)
|
|
>>> )
|
|
>>> def forward(self, x):
|
|
>>> return self.layers(x)
|
|
>>> net = SimpleNet()
|
|
>>> input_variables = ['x', 'y']
|
|
>>> output_variables =['u']
|
|
>>> model_feat = Network(net, input_variables, output_variables)
|
|
Network(
|
|
(extra_features): Sequential()
|
|
(model): Sequential(
|
|
(0): Linear(in_features=2, out_features=20, bias=True)
|
|
(1): Tanh()
|
|
(2): Linear(in_features=20, out_features=1, bias=True)
|
|
)
|
|
)
|
|
"""
|
|
|
|
def __init__(self, model, input_variables,
|
|
output_variables, extra_features=None):
|
|
super().__init__()
|
|
|
|
if extra_features is None:
|
|
extra_features = []
|
|
|
|
self._extra_features = torch.nn.Sequential(*extra_features)
|
|
self._model = model
|
|
self._input_variables = input_variables
|
|
self._output_variables = output_variables
|
|
|
|
# check model and input/output
|
|
self._check_consistency()
|
|
|
|
def _check_consistency(self):
|
|
"""Checking the consistency of model with input and output variables
|
|
|
|
:raises ValueError: Error in constructing the PINA network
|
|
"""
|
|
try:
|
|
tmp = torch.rand((10, len(self._input_variables)))
|
|
tmp = LabelTensor(tmp, self._input_variables)
|
|
tmp = self.forward(tmp) # trying a forward pass
|
|
tmp = LabelTensor(tmp, self._output_variables)
|
|
except:
|
|
raise ValueError('Error in constructing the PINA network.'
|
|
' Check compatibility of input/output'
|
|
' variables shape with the torch model'
|
|
' or check the correctness of the torch'
|
|
' model itself.')
|
|
|
|
def forward(self, x):
|
|
"""Forward method for Network class
|
|
|
|
:param torch.tensor x: input of the network
|
|
:return torch.tensor: output of the network
|
|
"""
|
|
|
|
x = x.extract(self._input_variables)
|
|
|
|
for feature in self._extra_features:
|
|
x = x.append(feature(x))
|
|
|
|
output = self._model(x).as_subclass(LabelTensor)
|
|
output.labels = self._output_variables
|
|
|
|
return output
|
|
|
|
@property
|
|
def input_variables(self):
|
|
return self._input_variables
|
|
|
|
@property
|
|
def output_variables(self):
|
|
return self._output_variables
|
|
|
|
@property
|
|
def extra_features(self):
|
|
return self._extra_features
|
|
|
|
@property
|
|
def model(self):
|
|
return self._model
|