* gpinn/basepinn new classes, pinn restructure * codacy fix gpinn/basepinn/pinn * inverse problem fix * Causal PINN (#267) * fix GPU training in inverse problem (#283) * Create a `compute_residual` attribute for `PINNInterface` * Modify dataloading in solvers (#286) * Modify PINNInterface by removing _loss_phys, _loss_data * Adding in PINNInterface a variable to track the current condition during training * Modify GPINN,PINN,CausalPINN to match changes in PINNInterface * Competitive Pinn Addition (#288) * fixing after rebase/ fix loss * fixing final issues --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> * Modify min max formulation to max min for paper consistency * Adding SAPINN solver (#291) * rom solver * fix import --------- Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local> Co-authored-by: Anna Ivagnes <75523024+annaivagnes@users.noreply.github.com> Co-authored-by: valc89 <103250118+valc89@users.noreply.github.com> Co-authored-by: Monthly Tag bot <mtbot@noreply.github.com> Co-authored-by: Nicola Demo <demo.nicola@gmail.com>
434 lines
16 KiB
Python
434 lines
16 KiB
Python
import torch
|
|
|
|
from pina.problem import SpatialProblem, InverseProblem
|
|
from pina.operators import laplacian
|
|
from pina.geometry import CartesianDomain
|
|
from pina import Condition, LabelTensor
|
|
from pina.solvers import PINN
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.equation.equation import Equation
|
|
from pina.equation.equation_factory import FixedValue
|
|
from pina.loss import LpLoss
|
|
|
|
|
|
def laplace_equation(input_, output_):
|
|
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
|
torch.sin(input_.extract(['y']) * torch.pi))
|
|
delta_u = laplacian(output_.extract(['u']), input_)
|
|
return delta_u - force_term
|
|
|
|
|
|
my_laplace = Equation(laplace_equation)
|
|
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
|
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
|
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
|
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
|
|
|
|
|
class InversePoisson(SpatialProblem, InverseProblem):
|
|
'''
|
|
Problem definition for the Poisson equation.
|
|
'''
|
|
output_variables = ['u']
|
|
x_min = -2
|
|
x_max = 2
|
|
y_min = -2
|
|
y_max = 2
|
|
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
|
|
data_output = LabelTensor(torch.rand(10, 1), ['u'])
|
|
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
|
|
# define the ranges for the parameters
|
|
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
|
|
|
def laplace_equation(input_, output_, params_):
|
|
'''
|
|
Laplace equation with a force term.
|
|
'''
|
|
force_term = torch.exp(
|
|
- 2*(input_.extract(['x']) - params_['mu1'])**2
|
|
- 2*(input_.extract(['y']) - params_['mu2'])**2)
|
|
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
|
|
|
return delta_u - force_term
|
|
|
|
# define the conditions for the loss (boundary conditions, equation, data)
|
|
conditions = {
|
|
'gamma1': Condition(location=CartesianDomain({'x': [x_min, x_max],
|
|
'y': y_max}),
|
|
equation=FixedValue(0.0, components=['u'])),
|
|
'gamma2': Condition(location=CartesianDomain(
|
|
{'x': [x_min, x_max], 'y': y_min
|
|
}),
|
|
equation=FixedValue(0.0, components=['u'])),
|
|
'gamma3': Condition(location=CartesianDomain(
|
|
{'x': x_max, 'y': [y_min, y_max]
|
|
}),
|
|
equation=FixedValue(0.0, components=['u'])),
|
|
'gamma4': Condition(location=CartesianDomain(
|
|
{'x': x_min, 'y': [y_min, y_max]
|
|
}),
|
|
equation=FixedValue(0.0, components=['u'])),
|
|
'D': Condition(location=CartesianDomain(
|
|
{'x': [x_min, x_max], 'y': [y_min, y_max]
|
|
}),
|
|
equation=Equation(laplace_equation)),
|
|
'data': Condition(input_points=data_input.extract(['x', 'y']),
|
|
output_points=data_output)
|
|
}
|
|
|
|
|
|
class Poisson(SpatialProblem):
|
|
output_variables = ['u']
|
|
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
|
|
|
conditions = {
|
|
'gamma1': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma2': Condition(
|
|
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma3': Condition(
|
|
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'gamma4': Condition(
|
|
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
|
equation=FixedValue(0.0)),
|
|
'D': Condition(
|
|
input_points=LabelTensor(torch.rand(size=(100, 2)), ['x', 'y']),
|
|
equation=my_laplace),
|
|
'data': Condition(
|
|
input_points=in_,
|
|
output_points=out_),
|
|
'data2': Condition(
|
|
input_points=in2_,
|
|
output_points=out2_)
|
|
}
|
|
|
|
def poisson_sol(self, pts):
|
|
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
|
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
|
|
|
truth_solution = poisson_sol
|
|
|
|
|
|
class myFeature(torch.nn.Module):
|
|
"""
|
|
Feature: sin(x)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(myFeature, self).__init__()
|
|
|
|
def forward(self, x):
|
|
t = (torch.sin(x.extract(['x']) * torch.pi) *
|
|
torch.sin(x.extract(['y']) * torch.pi))
|
|
return LabelTensor(t, ['sin(x)sin(y)'])
|
|
|
|
|
|
# make the problem
|
|
poisson_problem = Poisson()
|
|
model = FeedForward(len(poisson_problem.input_variables),
|
|
len(poisson_problem.output_variables))
|
|
model_extra_feats = FeedForward(
|
|
len(poisson_problem.input_variables) + 1,
|
|
len(poisson_problem.output_variables))
|
|
extra_feats = [myFeature()]
|
|
|
|
|
|
def test_constructor():
|
|
PINN(problem=poisson_problem, model=model, extra_features=None)
|
|
|
|
|
|
def test_constructor_extra_feats():
|
|
model_extra_feats = FeedForward(
|
|
len(poisson_problem.input_variables) + 1,
|
|
len(poisson_problem.output_variables))
|
|
PINN(problem=poisson_problem,
|
|
model=model_extra_feats,
|
|
extra_features=extra_feats)
|
|
|
|
|
|
def test_train_cpu():
|
|
poisson_problem = Poisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
pinn = PINN(problem = poisson_problem, model=model,
|
|
extra_features=None, loss=LpLoss())
|
|
trainer = Trainer(solver=pinn, max_epochs=1,
|
|
accelerator='cpu', batch_size=20)
|
|
trainer.train()
|
|
|
|
|
|
def test_train_restore():
|
|
tmpdir = "tests/tmp_restore"
|
|
poisson_problem = Poisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
pinn = PINN(problem=poisson_problem,
|
|
model=model,
|
|
extra_features=None,
|
|
loss=LpLoss())
|
|
trainer = Trainer(solver=pinn,
|
|
max_epochs=5,
|
|
accelerator='cpu',
|
|
default_root_dir=tmpdir)
|
|
trainer.train()
|
|
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
|
t = ntrainer.train(
|
|
ckpt_path=f'{tmpdir}/lightning_logs/version_0/'
|
|
'checkpoints/epoch=4-step=10.ckpt')
|
|
import shutil
|
|
shutil.rmtree(tmpdir)
|
|
|
|
|
|
def test_train_load():
|
|
tmpdir = "tests/tmp_load"
|
|
poisson_problem = Poisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
pinn = PINN(problem=poisson_problem,
|
|
model=model,
|
|
extra_features=None,
|
|
loss=LpLoss())
|
|
trainer = Trainer(solver=pinn,
|
|
max_epochs=15,
|
|
accelerator='cpu',
|
|
default_root_dir=tmpdir)
|
|
trainer.train()
|
|
new_pinn = PINN.load_from_checkpoint(
|
|
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
|
problem = poisson_problem, model=model)
|
|
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
|
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
|
assert new_pinn.forward(test_pts).extract(
|
|
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
|
torch.testing.assert_close(
|
|
new_pinn.forward(test_pts).extract(['u']),
|
|
pinn.forward(test_pts).extract(['u']))
|
|
import shutil
|
|
shutil.rmtree(tmpdir)
|
|
|
|
def test_train_inverse_problem_cpu():
|
|
poisson_problem = InversePoisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
|
n = 100
|
|
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
|
pinn = PINN(problem = poisson_problem, model=model,
|
|
extra_features=None, loss=LpLoss())
|
|
trainer = Trainer(solver=pinn, max_epochs=1,
|
|
accelerator='cpu', batch_size=20)
|
|
trainer.train()
|
|
|
|
|
|
# # TODO does not currently work
|
|
# def test_train_inverse_problem_restore():
|
|
# tmpdir = "tests/tmp_restore_inv"
|
|
# poisson_problem = InversePoisson()
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
|
# n = 100
|
|
# poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
|
# pinn = PINN(problem=poisson_problem,
|
|
# model=model,
|
|
# extra_features=None,
|
|
# loss=LpLoss())
|
|
# trainer = Trainer(solver=pinn,
|
|
# max_epochs=5,
|
|
# accelerator='cpu',
|
|
# default_root_dir=tmpdir)
|
|
# trainer.train()
|
|
# ntrainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
|
# t = ntrainer.train(
|
|
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=10.ckpt')
|
|
# import shutil
|
|
# shutil.rmtree(tmpdir)
|
|
|
|
|
|
def test_train_inverse_problem_load():
|
|
tmpdir = "tests/tmp_load_inv"
|
|
poisson_problem = InversePoisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
|
|
n = 100
|
|
poisson_problem.discretise_domain(n, 'random', locations=boundaries)
|
|
pinn = PINN(problem=poisson_problem,
|
|
model=model,
|
|
extra_features=None,
|
|
loss=LpLoss())
|
|
trainer = Trainer(solver=pinn,
|
|
max_epochs=15,
|
|
accelerator='cpu',
|
|
default_root_dir=tmpdir)
|
|
trainer.train()
|
|
new_pinn = PINN.load_from_checkpoint(
|
|
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
|
problem = poisson_problem, model=model)
|
|
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
|
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
|
assert new_pinn.forward(test_pts).extract(
|
|
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
|
torch.testing.assert_close(
|
|
new_pinn.forward(test_pts).extract(['u']),
|
|
pinn.forward(test_pts).extract(['u']))
|
|
import shutil
|
|
shutil.rmtree(tmpdir)
|
|
|
|
# # TODO fix asap. Basically sampling few variables
|
|
# # works only if both variables are in a range.
|
|
# # if one is fixed and the other not, this will
|
|
# # not work. This test also needs to be fixed and
|
|
# # insert in test problem not in test pinn.
|
|
# def test_train_cpu_sampling_few_vars():
|
|
# poisson_problem = Poisson()
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3']
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['x'])
|
|
# poisson_problem.discretise_domain(n, 'random', locations=['gamma4'], variables=['y'])
|
|
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
|
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
|
# trainer.train()
|
|
|
|
|
|
def test_train_extra_feats_cpu():
|
|
poisson_problem = Poisson()
|
|
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
pinn = PINN(problem=poisson_problem,
|
|
model=model_extra_feats,
|
|
extra_features=extra_feats)
|
|
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
|
trainer.train()
|
|
|
|
|
|
# TODO, fix GitHub actions to run also on GPU
|
|
# def test_train_gpu():
|
|
# poisson_problem = Poisson()
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
|
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
|
# trainer.train()
|
|
|
|
# def test_train_gpu(): #TODO fix ASAP
|
|
# poisson_problem = Poisson()
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
|
# poisson_problem.conditions.pop('data') # The input/output pts are allocated on cpu
|
|
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
|
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
|
# trainer.train()
|
|
|
|
# def test_train_2():
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# expected_keys = [[], list(range(0, 50, 3))]
|
|
# param = [0, 3]
|
|
# for i, truth_key in zip(param, expected_keys):
|
|
# pinn = PINN(problem, model)
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(50, save_loss=i)
|
|
# assert list(pinn.history_loss.keys()) == truth_key
|
|
|
|
|
|
# def test_train_extra_feats():
|
|
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(5)
|
|
|
|
|
|
# def test_train_2_extra_feats():
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# expected_keys = [[], list(range(0, 50, 3))]
|
|
# param = [0, 3]
|
|
# for i, truth_key in zip(param, expected_keys):
|
|
# pinn = PINN(problem, model_extra_feat, [myFeature()])
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(50, save_loss=i)
|
|
# assert list(pinn.history_loss.keys()) == truth_key
|
|
|
|
|
|
# def test_train_with_optimizer_kwargs():
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# expected_keys = [[], list(range(0, 50, 3))]
|
|
# param = [0, 3]
|
|
# for i, truth_key in zip(param, expected_keys):
|
|
# pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(50, save_loss=i)
|
|
# assert list(pinn.history_loss.keys()) == truth_key
|
|
|
|
|
|
# def test_train_with_lr_scheduler():
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 10
|
|
# expected_keys = [[], list(range(0, 50, 3))]
|
|
# param = [0, 3]
|
|
# for i, truth_key in zip(param, expected_keys):
|
|
# pinn = PINN(
|
|
# problem,
|
|
# model,
|
|
# lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
|
# lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
|
# )
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(50, save_loss=i)
|
|
# assert list(pinn.history_loss.keys()) == truth_key
|
|
|
|
|
|
# # def test_train_batch():
|
|
# # pinn = PINN(problem, model, batch_size=6)
|
|
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# # n = 10
|
|
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# # pinn.train(5)
|
|
|
|
|
|
# # def test_train_batch_2():
|
|
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# # n = 10
|
|
# # expected_keys = [[], list(range(0, 50, 3))]
|
|
# # param = [0, 3]
|
|
# # for i, truth_key in zip(param, expected_keys):
|
|
# # pinn = PINN(problem, model, batch_size=6)
|
|
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# # pinn.train(50, save_loss=i)
|
|
# # assert list(pinn.history_loss.keys()) == truth_key
|
|
|
|
|
|
# if torch.cuda.is_available():
|
|
|
|
# # def test_gpu_train():
|
|
# # pinn = PINN(problem, model, batch_size=20, device='cuda')
|
|
# # boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# # n = 100
|
|
# # pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# # pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# # pinn.train(5)
|
|
|
|
# def test_gpu_train_nobatch():
|
|
# pinn = PINN(problem, model, batch_size=None, device='cuda')
|
|
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
|
# n = 100
|
|
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
|
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
|
# pinn.train(5)
|
|
|