Files
PINA/pina/geometry/union_domain.py
Kush aaf2bed732 union domain implementation (#109)
* Union Class
* Implemented Union Tests

---------

Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com>
2023-11-17 09:51:29 +01:00

138 lines
4.8 KiB
Python

import torch
from .location import Location
from ..utils import check_consistency
from ..label_tensor import LabelTensor
class Union(Location):
""" PINA implementation of Unions of Domains."""
def __init__(self, geometries):
""" PINA implementation of Unions of Domains.
:param list geometries: A list of geometries from 'pina.geometry'
such as 'EllipsoidDomain' or 'CartesianDomain'.
:Example:
# Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
# Create a union of the ellipsoid domains
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
"""
super().__init__()
# union checks
self._check_union_inheritance(geometries)
self._check_union_consistency(geometries)
# assign geometries
self._geometries = geometries
@property
def geometries(self):
"""
The geometries."""
return self._geometries
@property
def variables(self):
"""
Spatial variables.
:return: All the spatial variables defined in '__init__()' in order.
:rtype: list[str]
"""
all_variables = []
seen_variables = set()
for geometry in self.geometries:
for variable in geometry.variables:
if variable not in seen_variables:
all_variables.append(variable)
seen_variables.add(variable)
return all_variables
def is_inside(self, point, check_border=False):
"""Check if a point is inside the union domain.
:param point: Point to be checked.
:type point: LabelTensor
:param check_border: Check if the point is also on the frontier
of the ellipsoid, default False.
:type check_border: bool
:return: Returning True if the point is inside, False otherwise.
:rtype: bool
"""
for geometry in self.geometries:
if geometry.is_inside(point, check_border):
return True
return False
def sample(self, n, mode='random', variables='all'):
"""Sample routine.
:param n: Number of points to sample in the shape.
:type n: int
:param mode: Mode for sampling, defaults to 'random'.
Available modes include: random sampling, 'random'.
:type mode: str, optional
:param variables: pinn variable to be sampled, defaults to 'all'.
:type variables: str or list[str], optional
:Example:
# Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
# Create a union of the ellipsoid domains
>>> union = GeometryUnion([ellipsoid1, ellipsoid2])
>>> union.sample(n=1000)
LabelTensor([[-0.2025, 0.0072],
[ 0.0358, 0.5748],
[ 0.5083, 0.0482],
...,
[ 0.5857, 0.9279],
[ 1.1496, 1.7339],
[ 0.7650, 1.0469]])
>>> len(union.sample(n=1000)
1000
"""
sampled_points = []
# calculate the number of points to sample for each geometry and the remainder
remainder = n % len(self.geometries)
num_points = n // len(self.geometries)
# sample the points
for i, geometry in enumerate(self.geometries):
# add to sample total if remainder is not 0
if i < remainder:
num_points += 1
sampled_points.append(geometry.sample(num_points, mode, variables))
return LabelTensor(torch.cat(sampled_points), labels=[f'{i}' for i in self.variables])
def _check_union_consistency(self, geometries):
"""Check if the dimensions of the geometries are consistent.
:param geometries: Geometries to be checked.
:type geometries: list[Location]
"""
for geometry in geometries:
if geometry.variables != geometries[0].variables:
raise NotImplementedError(
f'The geometries need to be the same dimensions. {geometry.variables} is not equal to {geometries[0].variables}')
def _check_union_inheritance(self, geometries):
"""Check if the geometries are inherited from 'pina.geometry.Location'.
param geometries: Geometries to be checked.
:type geometries: list[Location]
"""
for idx, geometry in enumerate(geometries):
check_consistency(geometry, Location, f'geometry[{idx}]')