* solvers -> solver * adaptive_functions -> adaptive_function * callbacks -> callback * operators -> operator * pinns -> physics_informed_solver * layers -> block
38 lines
1.2 KiB
Python
38 lines
1.2 KiB
Python
from pina.callback import SwitchOptimizer
|
|
import torch
|
|
import pytest
|
|
|
|
from pina.solver import PINN
|
|
from pina.trainer import Trainer
|
|
from pina.model import FeedForward
|
|
from pina.problem.zoo import Poisson2DSquareProblem as Poisson
|
|
from pina.optim import TorchOptimizer
|
|
|
|
# make the problem
|
|
poisson_problem = Poisson()
|
|
boundaries = ['g1', 'g2', 'g3', 'g4']
|
|
n = 10
|
|
poisson_problem.discretise_domain(n, 'grid', domains=boundaries)
|
|
poisson_problem.discretise_domain(n, 'grid', domains='D')
|
|
model = FeedForward(len(poisson_problem.input_variables),
|
|
len(poisson_problem.output_variables))
|
|
|
|
# make the solver
|
|
solver = PINN(problem=poisson_problem, model=model)
|
|
|
|
adam_optimizer = TorchOptimizer(torch.optim.Adam, lr=0.01)
|
|
lbfgs_optimizer = TorchOptimizer(torch.optim.LBFGS, lr= 0.001)
|
|
|
|
def test_switch_optimizer_constructor():
|
|
SwitchOptimizer(adam_optimizer, epoch_switch=10)
|
|
|
|
|
|
# def test_switch_optimizer_routine(): #TODO revert
|
|
# # make the trainer
|
|
# switch_opt_callback = SwitchOptimizer(lbfgs_optimizer, epoch_switch=3)
|
|
# trainer = Trainer(solver=solver,
|
|
# callback=[switch_opt_callback],
|
|
# accelerator='cpu',
|
|
# max_epochs=5)
|
|
# trainer.train()
|