Files
PINA/docs/source/index.rst
2023-11-17 09:51:29 +01:00

70 lines
2.3 KiB
ReStructuredText

Welcome to PINA's documentation!
===================================================
.. figure:: index_files/pina_logo.png
:align: center
:width: 150
|
PINA is a Python package providing an easy interface to deal with
physics-informed neural networks (PINN) for the approximation of (differential,
nonlinear, ...) functions. Based on Pytorch, PINA offers a simple and intuitive
way to formalize a specific problem and solve it using PINN. The approximated
solution of a differential equation can be implemented using PINA in a few lines
of code thanks to the intuitive and user-friendly interface.
.. figure:: index_files/API_color.png
:alt: PINA application program interface
:align: center
:width: 500
|
Physics-informed neural network
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PINN is a novel approach that involves neural networks to solve supervised
learning tasks while respecting any given law of physics described by general
nonlinear differential equations. Proposed in "Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations", such framework aims to
solve problems in a continuous and nonlinear settings. :py:class:`pina.pinn.PINN`
.. toctree::
:maxdepth: 2
:caption: Package Documentation:
Installation <_rst/installation>
API <_rst/code>
Contributing <_rst/contributing>
License <LICENSE.rst>
.. the following is demo content intended to showcase some of the features you can invoke in reStructuredText
.. this can be safely deleted or commented out
.. ........................................................................................
.. toctree::
:maxdepth: 1
:numbered:
:caption: Tutorials:
Getting start with PINA <_rst/tutorial1/tutorial.rst>
Poisson problem <_rst/tutorial2/tutorial.rst>
Wave equation <_rst/tutorial3/tutorial.rst>
Continuous Convolutional Filter <_rst/tutorial4/tutorial.rst>
Fourier Neural Operator <_rst/tutorial5/tutorial.rst>
Geometry Usage <_rst/tutorial6/tutorial.rst>
.. ........................................................................................
.. toctree::
:maxdepth: 2
:numbered:
:caption: Download
.. ........................................................................................