Files
PINA/tests/test_solvers/test_supervised_solver.py
FilippoOlivo 2be57944ba Fix SupervisedSolver GPU bug and implement GraphSolver (#346)
* Fix some bugs
* Solve bug with GPU and model_summary parameters in SupervisedSolver class
* Implement GraphSolver class
* Fix Tutorial 5
2025-03-19 17:46:33 +01:00

177 lines
5.6 KiB
Python

import torch
from pina.problem import AbstractProblem
from pina import Condition, LabelTensor
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.loss import LpLoss
from pina.solvers import GraphSupervisedSolver
class NeuralOperatorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
domains = {
'pts': LabelTensor(
torch.rand(100, 2),
labels={1: {'name': 'space', 'dof': ['u_0', 'u_1']}}
)
}
conditions = {
'data' : Condition(
domain='pts',
output_points=LabelTensor(
torch.rand(100, 1),
labels={1: {'name': 'output', 'dof': ['u']}}
)
)
}
class NeuralOperatorProblemGraph(AbstractProblem):
input_variables = ['x', 'y', 'u_0', 'u_1']
output_variables = ['u']
domains = {
'pts': LabelTensor(
torch.rand(100, 4),
labels={1: {'name': 'space', 'dof': ['x', 'y', 'u_0', 'u_1']}}
)
}
conditions = {
'data' : Condition(
domain='pts',
output_points=LabelTensor(
torch.rand(100, 1),
labels={1: {'name': 'output', 'dof': ['u']}}
)
)
}
class myFeature(torch.nn.Module):
"""
Feature: sin(x)
"""
def __init__(self):
super(myFeature, self).__init__()
def forward(self, x):
t = (torch.sin(x.extract(['u_0']) * torch.pi) *
torch.sin(x.extract(['u_1']) * torch.pi))
return LabelTensor(t, ['sin(x)sin(y)'])
problem = NeuralOperatorProblem()
problem_graph = NeuralOperatorProblemGraph()
# make the problem + extra feats
extra_feats = [myFeature()]
model = FeedForward(len(problem.input_variables),
len(problem.output_variables))
model_extra_feats = FeedForward(
len(problem.input_variables) + 1,
len(problem.output_variables))
def test_constructor():
SupervisedSolver(problem=problem, model=model)
# def test_constructor_extra_feats():
# SupervisedSolver(problem=problem, model=model_extra_feats, extra_features=extra_feats)
'''
class AutoSolver(SupervisedSolver):
def forward(self, input):
from pina.graph import Graph
print(Graph)
print(input)
if not isinstance(input, Graph):
input = Graph.build('radius', nodes_coordinates=input, nodes_data=torch.rand(input.shape), radius=0.2)
print(input)
print(input.data.edge_index)
print(input.data)
g = self._model(input.data, edge_index=input.data.edge_index)
g.labels = {1: {'name': 'output', 'dof': ['u']}}
return g
du_dt_new = LabelTensor(self.model(graph).reshape(-1,1), labels = ['du'])
return du_dt_new
'''
class GraphModel(torch.nn.Module):
def __init__(self, in_channels, out_channels):
from torch_geometric.nn import GCNConv, NNConv
super().__init__()
self.conv1 = GCNConv(in_channels, 16)
self.conv2 = GCNConv(16, out_channels)
def forward(self, data, edge_index):
print(data)
x = data.x
print(x)
x = self.conv1(x, edge_index)
x = x.relu()
x = self.conv2(x, edge_index)
return x
def test_graph():
solver = GraphSupervisedSolver(problem=problem_graph, model=GraphModel(2, 1), loss=LpLoss(),
nodes_coordinates=['x', 'y'], nodes_data=['u_0', 'u_1'])
trainer = Trainer(solver=solver, max_epochs=30, accelerator='cpu', batch_size=20)
trainer.train()
def test_train_cpu():
solver = SupervisedSolver(problem = problem, model=model, loss=LpLoss())
trainer = Trainer(solver=solver, max_epochs=300, accelerator='cpu', batch_size=20)
trainer.train()
# def test_train_restore():
# tmpdir = "tests/tmp_restore"
# solver = SupervisedSolver(problem=problem,
# model=model,
# extra_features=None,
# loss=LpLoss())
# trainer = Trainer(solver=solver,
# max_epochs=5,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
# t = ntrainer.train(
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
# import shutil
# shutil.rmtree(tmpdir)
# def test_train_load():
# tmpdir = "tests/tmp_load"
# solver = SupervisedSolver(problem=problem,
# model=model,
# extra_features=None,
# loss=LpLoss())
# trainer = Trainer(solver=solver,
# max_epochs=15,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# new_solver = SupervisedSolver.load_from_checkpoint(
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
# problem = problem, model=model)
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
# assert new_solver.forward(test_pts).shape == (20, 1)
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
# torch.testing.assert_close(
# new_solver.forward(test_pts),
# solver.forward(test_pts))
# import shutil
# shutil.rmtree(tmpdir)
# def test_train_extra_feats_cpu():
# pinn = SupervisedSolver(problem=problem,
# model=model_extra_feats,
# extra_features=extra_feats)
# trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
# trainer.train()
test_graph()