Files
PINA/tests/test_block/test_pirate_network_block.py
2025-09-08 14:57:29 +02:00

54 lines
1.4 KiB
Python

import torch
import pytest
from pina.model.block import PirateNetBlock
data = torch.rand((20, 3))
@pytest.mark.parametrize("inner_size", [10, 20])
def test_constructor(inner_size):
PirateNetBlock(inner_size=inner_size, activation=torch.nn.Tanh)
# Should fail if inner_size is negative
with pytest.raises(AssertionError):
PirateNetBlock(inner_size=-1, activation=torch.nn.Tanh)
@pytest.mark.parametrize("inner_size", [10, 20])
def test_forward(inner_size):
model = PirateNetBlock(inner_size=inner_size, activation=torch.nn.Tanh)
# Create dummy embedding
dummy_embedding = torch.nn.Linear(data.shape[1], inner_size)
x = dummy_embedding(data)
# Create dummy U and V tensors
U = torch.rand((data.shape[0], inner_size))
V = torch.rand((data.shape[0], inner_size))
output_ = model(x, U, V)
assert output_.shape == (data.shape[0], inner_size)
@pytest.mark.parametrize("inner_size", [10, 20])
def test_backward(inner_size):
model = PirateNetBlock(inner_size=inner_size, activation=torch.nn.Tanh)
data.requires_grad_()
# Create dummy embedding
dummy_embedding = torch.nn.Linear(data.shape[1], inner_size)
x = dummy_embedding(data)
# Create dummy U and V tensors
U = torch.rand((data.shape[0], inner_size))
V = torch.rand((data.shape[0], inner_size))
output_ = model(x, U, V)
loss = torch.mean(output_)
loss.backward()
assert data.grad.shape == data.shape