Files
PINA/pina/trainer.py
2025-03-19 17:46:35 +01:00

110 lines
3.9 KiB
Python

""" Trainer module. """
import torch
import lightning
from .utils import check_consistency
from .data import PinaDataModule
from .solvers.solver import SolverInterface
class Trainer(lightning.pytorch.Trainer):
def __init__(self,
solver,
batch_size=None,
train_size=.7,
test_size=.2,
val_size=.1,
predict_size=.0,
**kwargs):
"""
PINA Trainer class for costumizing every aspect of training via flags.
:param solver: A pina:class:`SolverInterface` solver for the differential problem.
:type solver: SolverInterface
:param batch_size: How many samples per batch to load. If ``batch_size=None`` all
samples are loaded and data are not batched, defaults to None.
:type batch_size: int | None
:Keyword Arguments:
The additional keyword arguments specify the training setup
and can be choosen from the `pytorch-lightning
Trainer API <https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-class-api>`_
"""
super().__init__(**kwargs)
# check inheritance consistency for solver and batch size
check_consistency(solver, SolverInterface)
if batch_size is not None:
check_consistency(batch_size, int)
self.train_size = train_size
self.test_size = test_size
self.val_size = val_size
self.predict_size = predict_size
self.solver = solver
self.batch_size = batch_size
self._move_to_device()
self.data_module = None
self._create_loader()
def _move_to_device(self):
device = self._accelerator_connector._parallel_devices[0]
# move parameters to device
pb = self.solver.problem
if hasattr(pb, "unknown_parameters"):
for key in pb.unknown_parameters:
pb.unknown_parameters[key] = torch.nn.Parameter(
pb.unknown_parameters[key].data.to(device))
def _create_loader(self):
"""
This method is used here because is resampling is needed
during training, there is no need to define to touch the
trainer dataloader, just call the method.
"""
if not self.solver.problem.are_all_domains_discretised:
error_message = '\n'.join([
f"""{" " * 13} ---> Domain {key} {"sampled" if key in self.solver.problem.discretised_domains else
"not sampled"}""" for key in
self.solver.problem.domains.keys()
])
raise RuntimeError('Cannot create Trainer if not all conditions '
'are sampled. The Trainer got the following:\n'
f'{error_message}')
automatic_batching = False
self.data_module = PinaDataModule(self.solver.problem,
train_size=self.train_size,
test_size=self.test_size,
val_size=self.val_size,
predict_size=self.predict_size,
batch_size=self.batch_size,
automatic_batching=automatic_batching)
def train(self, **kwargs):
"""
Train the solver method.
"""
return super().fit(self.solver,
datamodule=self.data_module,
**kwargs)
def test(self, **kwargs):
"""
Test the solver method.
"""
return super().test(self.solver,
datamodule=self.data_module,
**kwargs)
@property
def solver(self):
"""
Returning trainer solver.
"""
return self._solver
@solver.setter
def solver(self, solver):
self._solver = solver