Files
PINA/tests/test_solvers/test_rom_solver.py
Nicola Demo a899327de1 fix tests
2025-03-19 17:46:34 +01:00

105 lines
4.4 KiB
Python

import torch
import pytest
from pina.problem import AbstractProblem
from pina import Condition, LabelTensor
from pina.solvers import ReducedOrderModelSolver
from pina.trainer import Trainer
from pina.model import FeedForward
from pina.loss import LpLoss
# class NeuralOperatorProblem(AbstractProblem):
# input_variables = ['u_0', 'u_1']
# output_variables = [f'u_{i}' for i in range(100)]
# conditions = {'data' : Condition(input_points=
# LabelTensor(torch.rand(10, 2),
# input_variables),
# output_points=
# LabelTensor(torch.rand(10, 100),
# output_variables))}
# # make the problem + extra feats
# class AE(torch.nn.Module):
# def __init__(self, input_dimensions, rank):
# super().__init__()
# self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
# self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
# class AE_missing_encode(torch.nn.Module):
# def __init__(self, input_dimensions, rank):
# super().__init__()
# self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
# class AE_missing_decode(torch.nn.Module):
# def __init__(self, input_dimensions, rank):
# super().__init__()
# self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
# rank = 10
# problem = NeuralOperatorProblem()
# interpolation_net = FeedForward(len(problem.input_variables),
# rank)
# reduction_net = AE(len(problem.output_variables), rank)
# def test_constructor():
# ReducedOrderModelSolver(problem=problem,reduction_network=reduction_net,
# interpolation_network=interpolation_net)
# with pytest.raises(SyntaxError):
# ReducedOrderModelSolver(problem=problem,
# reduction_network=AE_missing_encode(
# len(problem.output_variables), rank),
# interpolation_network=interpolation_net)
# ReducedOrderModelSolver(problem=problem,
# reduction_network=AE_missing_decode(
# len(problem.output_variables), rank),
# interpolation_network=interpolation_net)
# def test_train_cpu():
# solver = ReducedOrderModelSolver(problem = problem,reduction_network=reduction_net,
# interpolation_network=interpolation_net, loss=LpLoss())
# trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20)
# trainer.train()
# def test_train_restore():
# tmpdir = "tests/tmp_restore"
# solver = ReducedOrderModelSolver(problem=problem,
# reduction_network=reduction_net,
# interpolation_network=interpolation_net,
# loss=LpLoss())
# trainer = Trainer(solver=solver,
# max_epochs=5,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
# t = ntrainer.train(
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
# import shutil
# shutil.rmtree(tmpdir)
# def test_train_load():
# tmpdir = "tests/tmp_load"
# solver = ReducedOrderModelSolver(problem=problem,
# reduction_network=reduction_net,
# interpolation_network=interpolation_net,
# loss=LpLoss())
# trainer = Trainer(solver=solver,
# max_epochs=15,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# new_solver = ReducedOrderModelSolver.load_from_checkpoint(
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
# problem = problem,reduction_network=reduction_net,
# interpolation_network=interpolation_net)
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
# assert new_solver.forward(test_pts).shape == (20, 100)
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
# torch.testing.assert_close(
# new_solver.forward(test_pts),
# solver.forward(test_pts))
# import shutil
# shutil.rmtree(tmpdir)